簡易檢索 / 詳目顯示

研究生: 黃百辰
Bai-Chen Huang
論文名稱: 應用於定置型儲能櫃之磷酸鋰鐵電池管理系統研製
Design and Implementation of a LiFePO4 Battery Management System for Immobile Energy Storage Rack
指導教授: 林長華
Chang-Hua Lin
口試委員: 林長華
Chang-Hua Lin
陳貽評
Yi-Ping Chen
劉添華
Tian-Hua Liu
劉華棟
Hwa-Dong Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 166
中文關鍵詞: 儲能系統電芯平衡電路電池管理系統
外文關鍵詞: ESS, Balance circuit, BMS
相關次數: 點閱:654下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主旨在研製應用於定置型儲能櫃之鋰電池管理系統電池管理系統,其中是文中所提之定置型儲能櫃以磷酸鋰鐵電池電芯作為再生能源之儲能裝置,並所以需建置鋰電池管理系統電池管理系統來對電池模組達到監控、保護、平衡及通訊的目的、保護電芯。整體系統中包含: 24S1P電池模組電池模組、電芯池電壓及電流監測電路、偵測保護電路、數位控制器微控制器(STM32G474VET6)、繼電器陣列、AC/DC系統隔離供應轉換器電源、降壓型轉換器、通訊模組、相關保護機制、人機介面以實現對電池模組的監控、保護以及對平衡電路的控制。
其次,本文的鋰電池管理系統電池管理系統主要平衡架構是結合藉由充電平衡與被動被動平衡而形成之平衡電路電路結合而成,其中,充電平衡是由市電經由AC/DC隔離轉換器電源整流及降壓後輸出12 V,再由降壓型轉換器與繼電器陣列選定待平衡電芯進行充電平衡,而被動平衡電路則是利用繼電器陣列搭接功率電阻放電,以消耗電芯多餘的電量,使電芯電量降低,以達成放電平衡;再者,本文以數位控制器微控制器作做為控制核心,可加入不同的撰寫演算法,以並調整平衡電流、最大電壓誤差值、平衡時間等參數,使得系統可由使用者自行制定修改程式就可變換整個電池管理系統電池管理系統之控制參數與平衡策略,相較於傳統類比控制,數位控制不僅可調整性佳,在時序控制上也相當具彈性。,最後,所提之電池管理系統電池管理系統可將電池模組中所有運作過程中電池電壓及電流監測電路監控數個電芯之電壓、電流、溫度等數據回傳至數位控制器微控制器進行中,數位控制器取得系統相關資料處理過後,再藉由通訊模組將處理後之數據回傳至個人電腦人機介面,可達儲存與監控電池模組電池模組資訊之功能。


This thesis aims to implement a battery management system (BMS) applied to immobile energy storage rack. The overall system is composed of a 24S1P battery module, cell voltage and current supervisory circuit, protection circuit and method, micro controller, relay circuit, and AC/DC converter for system power, buck converter, communication module, user interface.
That BMS in this thesis is combined with battery charge and discharge circuit to achieve balance function; furthermore, charger’s input 12 V is from external electricity and then while charger went to charge the battery would match relay to connect the battery waiting for balance. The passive balance circuit same uses the relay to connect the battery waiting for balance and resistance together. To let battery consume its redundant power. Moreover, the micro controller is used as the control core. Different algorithms can be added to adjust the parameters of the balance current, and maximum voltage error so that user can formulate control parameters and balanced strategy of the BMS. Finally, the proposed BMS can send data about all cells in the battery module back to the micro controller for data processing.And then send the processed data back to the personal computer user interface through the communication module to let system can store the battery module information.

目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻探討 1.3 論文架構 第二章 定置型儲能櫃與電芯電量平衡系統 2.1 定置型儲能櫃介紹 2.2 各式電芯種類介紹 2.3 本文所使用之電芯介紹 2.3.1 電芯規格 2.3.2 電芯容量與充放電特性 2.4 電芯電量平衡技術簡介 2.4.1 電芯不平衡的影響 2.4.2 電芯電量平衡說明 2.4.3 被動式電芯電量平衡架構 2.4.4 主動式電芯電量平衡架構 2.4.5 電芯電量均衡器 2.5 本文應用於定置型儲能櫃之電芯電量平衡架構 2.5.1 各式電芯電量平衡架構抉擇與分析 2.5.2 本文所提之電芯充電器 2.5.3 電芯充電器模式分析 2.5.4 被動式平衡電路工作模式 第三章 電池管理系統設計與實現 3.1 系統架構 3.2 電池管理系統設計 3.2.1 充電平衡電路之系統規格 3.2.2 電池管理系統平衡功能 3.2.3 電池管理系統監測功能 3.2.4 電池管理系統保護功能 3.3 電池管理系統之電源規劃 3.3.1 電芯充電器之電源配置 3.3.2 數位系統之電源配置 第四章 數位化控制與人機介面之設計與實現 4.1 數位控制晶片 STMG474VET6 4.1.1 數位控制晶片規格 4.1.2 程式編輯與開發環境介紹 4.2 通訊介面介紹 4.2.1 非同步收發傳輸器 4.2.2 串列週邊介面 4.2.3 Modbus 通訊界面 4.3 數位電量平衡策略設計與控制流程 4.3.1 傳統充電平衡策略 4.3.2 傳統被動平衡策略 4.3.3 本文應用不同場域之電量平衡策略與控制流程 4.4 數位控制晶片與電池管理系統之整合 4.5 人機介面設計與實現 第五章 電池管理系統模擬與實測 5.1 系統測試環境介紹 5.2 電量平衡電路之模擬與實測波形 5.2.1 電芯平衡充電 5.2.2 電芯對功率電阻平衡放電 5.3 電芯溫度監測實測 5.4 電池管理系統人機介面實測 5.4.1 主系統模式管理單元 5.4.2 平衡電路運作狀態管理單元 5.4.3 通訊埠選擇管理單元 5.4.4 充電器參數管理單元 5.4.5 電芯管理單元 5.5 電量平衡電路之不同策略實測結果5.6 分析與比較各平衡策略間之實測結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] 行政院能源減碳辦公室, “綠能科技產業創新推動方案進度及成果,”
2018/01/18.[Online], Available: https://reurl.cc/QLNWb2
[2] 經濟部能源局, “經濟成長力道強 2025 年再生能源裝置量目標不變,”
2022/01/03.[Online], Available: https://reurl.cc/OAa173
[3] 黃至弘,“淺談我國綠能科研投入情況,”綠能科技產業推動中心技術發展
組, 2020/02/17.[Online], Available: https://reurl.cc/9G01Vj
[4] 經濟部能源局, “綠能科技產業創新推動方案,” 2017/12/07.[Online], Available:
https://reurl.cc/lonZQA
[5] H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Chow, “Battery Management System:
An Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE
Industrial Electronics Magazine, vol. 7, no. 2, pp. 4-16, June 2013.
[6] H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Chow, “Battery Management System:
An Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE
Industrial Electronics Magazine, vol. 7, no. 2, pp. 4-16, June 2013.
[7] Houde Dai, Guangcai Zhao, Mingqiang Lin, Ji Wu and Gengfeng Zheng, “A Novel
Estimation Method for the State of Health of Lithium-Ion Battery Using Prior
Knowledge-Based Neural Network and Markov Chain,” IEEE Transactions on
Industrial Electronics , vol. 10, no. 66, pp. 7706 - 7716, Octorber 2019.
[8] Carlos Vidal, Pawel Maylsz, Phillip Kollmeyer, Ali Emadi, “Machine Learning
Applied to Electrified Vehicle Battery State of Charge and State of Health
Estimation State-of-the-Art,” IEEE Access, 25 March 2020.
[9] Hsiangfu Yuan Lanrong Dung, “Offline State-of-Health Estimation for HighPower Lithium-Ion Batteries Using Three-Point Impedance Extraction Method,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2019 - 2032,
March 2017.
[10] Mario Cacciato, Giovanni Nobile, Giuseppe Scarcella, Giacomo Scelba, “RealTime Model-Based Estimation of SOC and SOH for Energy Storage Systems,”
IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 794 - 803, January
2017.
[11] Hicham Chaoui, Chinemerem Crhristopher Ibe-Ekeocha,“State of Charge and
State of Health Estimation for Lithium Batteries Using Recurrent Neural
Networks.,” IEEE Transactions on Vehicular Technology, Vol.66, no.3, pp. 8773 -
8783, October 2017.
[12] Dong Zheng, Huimin Wang, Jingjing An, Jing Chen, Haihong Pan and Lin Chen,
“Real-Time Estimation of Battery State of Charge With Metabolic Grey Model
and LabVIEW Platform,” IEEE Access, vol. 6, pp. 13170 - 13180, March 2018.
146
[13] M. Cacciato, G. Nobile, G. Scarcella and G. Scelba, “Real-Time Model-Based
Estimation of SOC and SOH for Energy Storage Systems,” IEEE Transactions on
Power Electronics, vol. 32, no. 1, pp. 794 - 803, 2017.
[14] Z. Zhang, X. Cheng, Z.-Y. Lu and D.-J. Gu, “SOC Estimation of Lithium-Ion
Battery Pack Considering Balancing Current,” IEEE Transactions on Power
Electronics, vol. 33, no. 3, pp. 2216 - 2226, March 2018.
[15] Y. Zhou, M. Huang and M. Pecht, “An Online State of Health Estimation Method
for Lithium-ion Batteries Based on Integrated Voltage,” 2018 IEEE International
Conference on Prognostics and Health Management (ICPHM), June 2018.
[16] R. Xiong, J. Cao, Q. Yu, H. He and F. Sun, “Critical Review on the Battery State
of Charge Estimation Methods for Electric Vehicles,” IEEE Access, vol. 6, pp.
1832 - 1843, December 2017.
[17] 大規模鋰離子電池管理系統,李建林譯,機械工業出版社,2016/10
[18] 百盈能源科技 , “ 鋰 電 池 及 保 護 板 選 擇 要 注 意 什 麼 事 項 ?,”
2021/09/23.[Online], Available: https://reurl.cc/zZjqQ6
[19] Qian, Hao; Zhang, Jianhui; Lai, Jih-Sheng; Yu, Wensong, “A High-Efficiency
Grid-Tie Battery Energy Storage System,” IEEE Transactiona on Power
Electronics, vol. 26, no. 3, pp. 886 - 896, March 2011.
[20] Miranda, Ismael; Silva, Nuno; Leite, Helder, “A Holistic Approach to the
Integration of Battery Energy Storage Systems in Island Electric Grids With High
Wind Penetration,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp.
775 - 785, April 2016.
[21] Miranda, Ismael; Silva, Nuno; Leite, Helder, “A Holistic Approach to the
Integration of Battery Energy Storage Systems in Island Electric Grids With High
Wind Penetration,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp.
775 - 785, April 2016.
[22] Guishi Wang, Georgios Konstantinou, Christopher D. Townsend, Josep Pou,
Sergio Vazquez, Georgios D. Demetriades and Vassilios Georgios Agelidis, “A
Review of Power Electronics for Grid Connection of Utility-Scale Battery Energy
Storage Systems,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp.
1778 - 1790, October 2016.
[23] Felipe O. Ramos, Aline L. Pinheiro, Rafael N. Lima, Martins M. B. Neto,
Washigton A.S. Junior, Libina G. S. Bezerra, “A Real Case Analysis of a Battery
Energy Storage System for Energy Time Shift, Demand Management, and
Reactive Control,” 2021 IEEE PES Innovative Smart Grid Technologies
Conference - Latin America (ISGT Latin America), September 2021
[24] David M. Rosewater, David A. Copp, Tu A. Nguyen, Raymond H. Byrne, Surya
Santoso, “Battery Energy Storage Models for Optimal Control,” IEEE Access, vol.
147
7, pp. 178357 - 178391, December 2019
[25] Kristaps Vitols, “Efficiency of LiFePO4 Battery and Charger with Passive
Balancing,” 2015 IEEE 3rd Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), November 2015
[26] Kristaps Vitols, “Redesign of Passive Balancing Battery Management System to
Active Balancing with Integrated Charger Converter,” 2014 14th Biennial Baltic
Electronic Conference (BEC), October 2014
[27] Yunlong Shang, Naxin Cui, Bin Duan, Chenghui Zhang, “A Global Modular
Equalizer Based on Forward Conversion for Series-Connected Battery Strings,”
IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no.
3, pp. 1456 - 1469, September 2018
[28] Yang Chen, Xiaofang Liu, Yangyi Cui, Jiming Zou, Shiyan Yang, “A
MultiWinding Transformer Cell-to-Cell Active Equalization Method for LithiumIon Batteries With Reduced Number of Driving Circuits,” IEEE Transactions on
Power Electronics, vol. 31, no. 7, pp. 4916 - 4929, July 2016
[29] Kyung-Min Lee, Sang-Won Lee, Yoon-Geol Choi, and Bongkoo Kang, “Active
Balancing of Li-Ion Battery Cells Using Transformer as Energy Carrier,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1251 - 1257, February
2017
[30] Mohammad Abdul Hannan, Md. Murshadul Hoque, Seow Eng Peng, M. Nasir
Uddin, “Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle
Applications,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp.
2541 - 2549, May-June 2017
[31] Yuanmao Ye, Ka Wai E. Cheng, Yat Chi Fong, Xiangdang Xue, Jiongkang Lin,
“Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing
Systems and Their Balancing Exploration,” IEEE Transactions on Power
Electronics, vol. 32, no. 6, pp. 4444 - 4454, June 2017
[32] 原 生 生 活 , “ 用 電 大 戶 條 款 資 訊 ,” 2021/03/24.[Online], Available:
https://reurl.cc/d2OedV
[33] 隨意窩, “電動產業的世界 貨櫃儲能組,” 2018/05/15.[Online], Available:
https://reurl.cc/RrRvdx
[34] 百盈能源科技, “鋰電池電解液對人體有哪些危害?,” 2021/09/23.[Online],
Available: https://reurl.cc/p1javQ
[35] Eletronics Hub, “What are the Different Types of Batteries?,” .[Online], Available:
https://reurl.cc/ErYGzK
[36] Battery University,“Summary Table of Lithium-based Batteries,” BU216, 2020-
11-20. [Online], Available: https://reurl.cc/mLrL5M
[37] 陳廣霈,“應用於 5G 電信基地台之磷酸鋰鐵電芯管理之研製,”國立臺灣科
148
技大學電機工程系碩士學位論文,民國一一零年八月。
[38] 台達電子, “工商型「斜槓」儲能系統選型與規劃攻略,” 2020/09/21.[Online],
Available: https://reurl.cc/vdGkkA
[39] CATL, “Product Specification of 280Ah Cell Datasheet,”
[40] EV lithium, “EVE 3.2V 280Ah LiFePO4 Prismatic Battery Cell,”.[Online],
Available: https://reurl.cc/OAQVr3
[41] 陳寧賢,“鋰電池模組內外平衡之設計與實現,”國立臺灣科技大學電機工
程系碩士學位論文,民國一百零九年七月。
[42] 新通訊元件雜誌, “避免電池容量失衡,電芯平衡技術延長鋰電池壽命,”
2013/05/06.[Online], Available: https://reurl.cc/M0mr5W
[43] S. Apipatsakul, M. Masomtob and N. Fuengwarodsakul, "On a Design of
Adjustable Passive Balancing Circuit Using PWM Technique for Li-Ion Battery,"
2019 Research, Invention, and Innovation Congress (RI2C), 2019, pp. 1-5, doi:
10.1109/RI2C48728.2019.8999960.
[44] N. Ghaeminezhad, Q. Ouyang, X. Hu, G. Xu, and Z. Wang, “Active Cell
Equalization Topologies Analysis for Battery Packs: A Systematic Review,” IEEE
Trans. Power Electron., vol. 36, no. 8, pp. 9119–9135, Aug. 2021, doi:
10.1109/TPEL.2021.3052163.
[45] TOSHIBA,“TLP250H Datasheet”.
[46] Omron Electronics, “Impulse Withstand Voltage as High as 10kV with 4kV
Dielectric Strength: Ideal for Power Supply Switching”
[47] Linear Technology, “LTC6803-2/LTC6803-4 Multicell Battery Stack Monitor
Datasheet”
[48] Texas Instruments, “ISO7741-Q1 Datasheet”
[49] Texas Instruments, “LM358-BIDR Datasheet”
[50] IXYS Corporation “LOC Series Linear Optocouplers Datasheet”
[51] Murata Manufacturing Co, “NXFT15WF104FA1B025 Datasheet”
[52] Allegro MicroSystems, ACS712ELCTR-20A-T Datasheet”
[53] 李宥霖,“具雙向返馳轉換器之主動式電芯平衡系統控制策略”,國立臺灣
科技大學電機工程系碩士學位論文,民國一百零八年七月。
[54] 簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
[55] 昇陽電芯,“產品特性與優勢”. [Online], Available: https://reurl.cc/ogrg2j
[56] 蔡汶峰,“鋰離子電池儲存與鋰金屬沉澱之探討,”國立臺灣大學工學院應
用力學研究所碩士論文,民國一零八年七月。

無法下載圖示 全文公開日期 2032/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2120/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE