簡易檢索 / 詳目顯示

研究生: 黃志忠
Chih-Chung Huang
論文名稱: 串聯充電器之均壓控制與動態響應分析
Voltage Balance Control and Dynamic Response Analysis for Series-Connected Chargers
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
梁從主
Tsorng-Juu Liang
陳耀銘
Yaow-Ming Chen
楊宗銘
Chung-Ming Young
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 147
中文關鍵詞: 漏感小信號模型串聯均壓控制電源與負載交互作用
外文關鍵詞: Leakage inductance, Small signal model, voltage balance control, Interaction between source and load
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,電動車及儲能系統的需求,促使鋰電池產業的快速發展。為了因應各種不 同應用、不同功率的需求,導致鋰電池陣列的電壓分布範圍甚廣,一般情況可從 200V 到 1000V,這也驅使具寬廣輸出範圍充電器的研究。然而,高充電器輸出電壓範圍與高 轉換效率並不容易兼顧,為此,本論文從提升系統配置的彈性出發,提出將多個充電器 串聯,使得當充電器運行於恆流模式時可達到充電器輸出電壓的平衡的作法,以實現寬 廣輸出電壓的目的。同樣為達到高配置彈性,充電器(轉換器)的並聯均流已發展逾 20 載,但串聯均壓功能則鮮少研究提及,本論文因此將研究主題放在充電器運行於 CC 模 式且串聯使用時的輸出電壓平衡分析。完整的分析步驟包括充電器的小信號模型建構, 充電器串聯電壓不平衡的現象解釋,均壓控制的設計準則,以及串聯系統與負載的交互 作用。本文利用一般的硬切全橋轉換器實現充電器功能,提出可準確預估包含變壓器漏 感效應的小信號模型,並據此得到充電器運行於恆流模式下的諾頓等效電路,用以解釋 充電器串聯時的不均壓現象。經由分析可知,若欲降低串聯電壓不平衡的現象,可以降 低高輸出電壓的充電器之輸出電流或輸出阻抗,反之,可提高具低輸出電壓的充電器之 輸出電流或輸出阻抗。利用此規則,本文提出平均輸出電壓均壓控制法,藉由回授串聯 系統的平均電壓值來調節充電器的輸出電流,以縮小輸出電壓與平均電壓的差異,進而 達到充電器串聯均壓功能。經由完整的系統電路分析,可得到包含均壓補償器的虛擬迴 路,應用此虛擬迴路,再搭配自動控制的理論,可設計出能實現穩定的充電器輸出均壓 的均壓補償器;另外,本文亦推導出用以分析充電器和負載間的交互作用的判斷式,此 判斷式包含串聯系統的輸出阻抗以及負載的輸入阻抗,可做為另一個虛擬迴路,此虛擬 迴路可用以分析充電器連接負載後的系統穩定。經由上述設計準則,本文利用兩個充電 器串聯以驗證結論的準確性,首先,利用均壓補償器的設計準則,實現具不同迴路頻寬的充電器均壓功能,由虛擬迴路所得到的系統特性與實驗結果的比較,可知本文推導結 果的正確性。其次,利用串聯系統的輸出阻抗,以及負載的輸入阻抗,本論文亦可準確 預估當串聯系統連接到負載後,整個系統的穩定性。因此,利用本論文的研究結果,除 可實現均壓功能外,亦可得到具高響應速度、高穩定性的充電器串聯均壓系統。


In recent years, the demand for electric vehicles and energy storage systems has led to the rapid development of the lithium-ion battery. In order to meet the needs of various applications and different powers, the voltage range of lithium-ion battery arrays is very wide, generally ranging from 200V to 1000V, which also drives research of charger with wide range of output voltage. However, it is not easy to satisfy both the high output voltage range of the charger and the high conversion efficiency. From the perspective of increasing the flexibility of system configuration, this dissertation proposes a method to connect multiple chargers in series to expand the output voltage and achieve the balance of the output voltage of each charger when operating in constant current mode. In order to achieve high configuration flexibility, current sharing of chargers (converters) connected in parallel has been developed for more than 20 years, but voltage balance of chargers connected in series is rarely mentioned in the study. Therefore, the research topic of this dissertation is putting on voltage balance analysis and control when chargers are operating in CC mode and connected in series. The complete analysis steps include the construction of the small signal model of the charger, interpretation of the phenomenon of voltage imbalance in the series of chargers, design criterion for voltages balance control, and analysis of interaction between series chargers and load. A general hard-switching full-bridge converter is used to realize the charger function, and a small-signal model that can accurately estimate the leakage inductance effect of the transformer is proposed. The Norton equivalent circuit of the charger operating in constant current mode is obtained to explain the voltage imbalance phenomenon when the chargers are connected in series. According to the analysis, if we want to reduce the series voltage imbalance, we can decrease the output current or output impedance of the charger with higher output voltage, on the contrary, we can increase the output current or output impedance of the charger with lower output voltage. Using the rule, this dissertation proposes the average voltage balance control strategy to minimize the difference between the output voltage and the average voltage of the system by feeding back the average voltage of the series system to each charger to regulate output current of the charger and achieve the voltage balance function. Through a complete analysis of the system, the virtual loop gain including the voltage balance compensator can be obtained. Applying this virtual loop gain, combined with the theory of automatic control, the voltage balance compensator that can achieve charger output voltage equalization can be designed. In addition, this dissertation also derives an equation for analyzing the interaction between the charges and the load. The equation includes the output impedance of the series system and the input impedance of the load. It can be used as another virtual loop gain. This virtual loop gain can be used to estimate system stability when the charger system is connected to the load. Through the above design criteria, this dissertation uses two chargers in series to verify the accuracy of the conclusion. First, using the design criterion of the voltage balance compensator to realize the series charger system with different voltage balance bandwidth, the theoretical results are compared with the experimental results. The results show the correctness of the conclusion. Next, using the output impedance of the series system and the input impedance of the load, the other virtual loop gain also accurately predicts the stability of the overall system when the series system is connected to the load. By using the methods proposed in the dissertation, the system of chargers in series not only has voltage balance function, but also has high response speed and high stability.

摘要...................................................................................................................................................................................... I Abstract................................................................................................................................................................................III 誌謝..................................................................................................................................................................................... V Contents............................................................................................................................................................................. VI List of Figures ..................................................................................................................................................................... IX List of Tables........................................................................................................................................................................IX List of Symbols ...................................................................................................................................................................XV Chapter 1 Introduction ........................................................................................................................................................ 1 1.1. Background of Research ............................................................................................................................................... 1 1.2. Challenge of charger for wide battery voltage applications .......................................................................................... 7 1.3. Research motivations and objections.......................................................................................................................... 10 1.4. Dissertation outline ..................................................................................................................................................... 12 Chapter 2 Modeling of charger operating in constant current mode ................................................................................. 14 2.1. Topology, modeling and control of charger with CV/CC mode.................................................................................... 14 2.2. The modified small signal model of charger ............................................................................................................... 21 2.3. Verification of the modified small signal model........................................................................................................... 27 2.4. Summary .................................................................................................................................................................... 45 Chapter 3 Voltage balance control and dynamic response of series-connected chargers................................................. 47 3.1. Small signal model excluding the impedance of load and Norton equivalent circuit of the charger in CC mode.......... 47 3.2. Voltage imbalance analysis of series-connected chargers ......................................................................................... 54 3.3. Control Strategy for voltage balance of series-connected chargers............................................................................ 59 3.3.1. Analysis of single charger including instantaneous voltage balance control.............................................................. 59 3.3.2. Norton equivalent circuit of chargers in series with voltage balance control............................................................. 64 3.3.3. Analysis of overall system with instantaneous voltage balance control ................................................................... 75 3.4. Virtual loop gains and design criterions of dynamic response and of voltage balance control of overall system ........ 76 3.4.1.Virtual loop gain and design criteria of dynamic response of the overall system........................................................ 77 3.4.2.Virtual loop gain and design criteria of voltage balance control of the overall system................................................ 81 3.5. Summary .................................................................................................................................................................... 82 Chapter 4 Verification of voltage balance and dynamic response of chargers in series..................................................... 83 4.1. Voltage sensing circuit design...................................................................................................................................... 83 4.2. Unbalance of chargers voltages without average voltage balance control ................................................................. 87 4.3. Performance of average voltage balance control ........................................................................................................ 90 4.3.1. Crossover frequency of voltage balance loop is 13Hz .............................................................................................. 91 4.3.2. Crossover frequency of voltage balance loop is 47Hz ............................................................................................. 95 4.3.3. Crossover frequency of voltage balance loop is 110Hz ............................................................................................ 98 4.3.4. Unstable condition................................................................................................................................................... 101 4.3.5.Discussions.............................................................................................................................................................. 102 4.4. Dynamic response of the series-connected chargers system ................................................................................... 103 4.5. Summary..................................................................................................................................................................... 108 Chapter 5 Conclusion and future works ............................................................................................................................ 109 5.1. Summary and main contributions ............................................................................................................................... 109 5.2. Future works ...............................................................................................................................................................111 References........................................................................................................................................................................ .113

[1]. G. Boyle, Renewable energy. OXFORD university press Oxford, 2004.
[2]. J. M. Carrasco et al., "Power-electronic systems for the grid integration of renewable energy sources: A survey," IEEE Transactions on industrial electronics, vol. 53, no. 4, pp. 1002-1016, 2006.
[3]. I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, "Overview of current and future energy storage technologies for electric power applications," Renewable and sustainable energy reviews, vol. 13, no. 6, pp. 1513-1522, 2009.
[4]. J. Huang, J. Chuanwen, and X. Rong, "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, vol. 12, no. 9, pp. 2472-2483, 2008.
[5]. J. P. Painuly, "Barriers to renewable energy penetration; a framework for analysis," Renewable energy, vol. 24, no. 1, pp. 73-89, 2001.
[6]. Bloomberg. Electric Vehicle Outlook 2017. https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF_EVO_2017_ExecutiveSummary.pdf
[7]. U.S. Energy Information Administration. International Energy Outlook 2017.
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
[8]. X. Luo, J. Wang, M. Dooner, J. Clarke, and C. Krupke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, vol. 137, pp. 511-536, 2015.
[9]. Advanced Energy Storage Systems Market Analysis By Technology (Batteries, Flywheel, Thermal, Compressed Air, Molten Salt) And Segment Forecasts To 2022. http://www.grandviewresearch.com/industry-analysis/advanced-energy-storage-systems-market
[10]. Yole Développement. Status of the Rechargeable Li-Ion Battery Industry Report. http://www.yole.fr/Li-Ion_BatteryCell_Overview.aspx#.Wg4_GVuCypo
[11]. D. Gerling, S. Zeljkovic, and R. Vuletic, "An applicability study of LV battery on-board chargers for high power EVs," in Electric Vehicle Conference (IEVC), IEEE, pp. 1-8, 2014
[12]. G. Liu, D. Li, J. Q. Zhang, and M. L. Jia, "High efficiency wide range bidirectional DC/DC converter for OBCM application," in Power Electronics and Application Conference and Exposition (PEAC), IEEE, pp. 1434-1438, 2014.
[13]. N. Shafiei and M. Ordonez, "Improving the regulation range of EV battery chargers with L3C2 resonant converters," IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3166-3184, 2015.
[14]. J. H. Zhang, "BYD EV charging challenges solutions," in Power Electronics Systems and Applications (PESA), pp. 1-4, 2011.
[15]. C. Botsford and A. Szczepanek, "Fast charging vs. slow charging: Pros and cons for the new age of electric vehicles," in International Battery Hybrid Fuel Cell Electric Vehicle Symposium, 2009.
[16]. J. Channegowda, V. K. Pathipati, and S. S. Williamson, "Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency," in Industrial Electronics (ISIE), IEEE, pp. 263-268, 2015.
[17]. J. Francfort, "Electric vehicle charging levels and requirements overview," Clean Cities December Webinar, 2010.
[18]. H. G. Jeong and K. B. Lee, "Stability improvement in an on-board battery charger for electric vehicles," in Vehicle Power and Propulsion Conference, IEEE, pp. 690-694, 2012.
[19]. G. Z. Hu, S. X. Duan, T. Cai, and B. Q. Liu, "Modeling, Control and Implementation of a Lithium-ion Battery Charger in Electric Vehicle Application," Przegląd Elektrotechniczny, vol. 88, no. 1b, pp. 255-258, 2012.
[20]. M. Veerachary and R. N. Gowra, "Analysis, design and control of bidirectional charger/discharger," in Power India Conference, IEEE, pp. 1-6, 2012.
[21]. H. Wang, S. Dusmez, and A. Khaligh, "A novel approach to design EV battery chargers using SEPIC PFC stage and optimal operating point tracking technique for LLC converter," in Applied Power Electronics Conference and Exposition (APEC), IEEE, pp. 1683-1689, 2014.
[22]. N. Wong and M. Kazerani, "A review of bidirectional on-board charger topologies for plugin vehicles," in Electrical & Computer Engineering (CCECE), IEEE, pp. 1-6, 2012.
[23] Y. Xu, Z. Wang, Y. Lin, and X. Ai, "Research on the model of EV battery and charger," in Power Engineering and Automation Conference (PEAM), IEEE, pp. 1-4, 2012.
[24]. M. Yilmaz and P. T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles," IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151-2169, 2013.
[25] Y. Hsieh, C. Wu, and C. Moo, "A multi-mode charging circuit for rechargeable batteries," in International Power Electronics Conference, pp. 1569-1574, 2005.
[26]. J. Fattal and P. B. Karami, "Review on different charging techniques of a lithium polymer battery," in Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 33-38, 2015.
[27]. R. C. Cope and Y. Podrazhansky, "The art of battery charging," in Battery Conference on Applications and Advances, pp. 233-235, 1999.
[28]. S. Cetin and A. Astepe, "A phase shifted full bridge converter design for electrical vehicle battery charge applications based on wide output voltage range," in Applied Electronics (AE), pp. 51-56, 2016.
[29] Z. U. Zahid et al., "Design and control of a single-stage large air-gapped transformer isolated battery charger for wide-range output voltage for EV applications," in Energy Conversion Congress and Exposition (ECCE), pp. 5481-5487, 2013.
[30]. S. Luo, Z. Ye, R. L. Lin and F. C. Lee, "A classification and evaluation of paralleling methods for power supply modules," in Power Electronics Specialists Conference, IEEE, pp. 901-908, 1999.
[31]. B. T. Irving and M. M. Jovanovic, "Analysis, design, and performance evaluation of droop current-sharing method," in Applied Power Electronics Conference and Exposition, IEEE, pp. 235-241, 2000.
[32]. J. W. Kim, H. S. Choi and B. H. Cho, "A novel droop method for converter parallel operation," IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 25-32, 2002.
[33]. X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, "An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy," IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1800-1812, 2014.
[34]. Y. Panov and M. M. Jovanovic, "Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules," in Applied Power Electronics Conference and Exposition IEEE, pp. 765-771, 2001.
[35]. X. Sun, Y. S. Lee and D. Xu, "Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme," IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 844-856, 2003.
[36]. V. J. Thottuvelil and G. C. Verghese, "Analysis and control design of paralleled DC/DC converters with current sharing," IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 635-644, 1998.
[37]. V. J. Thottuvelil and G. C. Verghese, "Stability analysis of paralleled DC/DC converters with active current sharing," in Power Electronics Specialists Conference, 1996. PESC'96 Record., 27th Annual IEEE, 1996, vol. 2, pp. 1080-1086: IEEE.
[38]. R. Wu, T. Kohama, Y. Kodera, T. Ninomiya and F. Ihara, "Load-current-sharing control for parallel operation of DC-to-DC converters," in Power Electronics Specialists Conference, , IEEE, pp. 101-107, 1993.
[39]. H. H. C. Iu and C. K. Tse, "Instability and bifurcation in parallel-connected buck converters under a master-slave current sharing scheme," in Power Electronics Specialists Conference, IEEE, pp. 708-713, 2000.
[40]. Y. Panov, J. Rajagopalan, and F. C. Lee, "Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control," in Applied Power Electronics Conference and Exposition, IEEE, pp. 436-442, 1997.
[41]. J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee and B. Manners, "Modeling and dynamic analysis of paralleled dc/dc converters with master-slave current sharing control," in Applied Power Electronics Conference and Exposition, IEEE, pp. 678-684, 1996.
[42]. R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.
[43]. V. Vorpérian, "Simplified Analysis of PWM Converters Using Model of PWM Switch, Part I: Continuous Conduction mode," IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490-505, 1990.
[44]. V. Vorpérian, "Simplified analysis of PWM converters using model of PWM switch. Part II. Discontinuous conduction mode," IEEE Transactions on Aerospace and Electronic systems, vol. 26, no. 3, pp. 497-505, 1990.
[45]. R. B. Ridley, "A new, continuous-time model for current-mode control (power convertors)," IEEE transactions on Power Electronics, vol. 6, no. 2, pp. 271-280, 1991.
[46]. F. D. Tan and R. Middlebrook, "A unified model for current-programmed converters," IEEE Transactions on Power Electronics, vol. 10, no. 4, pp. 397-408, 1995.
[47]. W. Tang, F. C. Lee, and R. B. Ridley, "Small-signal modeling of average current-mode control," IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 112-119, 1993.
[48]. B. C. Choi, "Step load response of a current-mode-controlled DC-to-DC converter," IEEE Transactions on aerospace and electronic systems, vol. 33, no. 4, pp. 1115-1121, 1997.
[49]. D. M. Sable, R. B. Ridley and B. H. Cho, "Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation," IEEE Transactions on Power Electronics, vol. 7, no. 1, pp. 136-142, 1992.
[50]. W. H. Ki, "Signal flow graph in loop gain analysis of DC-DC PWM CCM switching converters," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 6, pp. 644-655, 1998.
[51]. T. Suntio, M. Hankaniemi, and M. Karppanen, "Analysing the dynamics of regulated converters," IEE Proceedings-Electric Power Applications, vol. 153, no. 6, pp. 905-910, 2006.
[52]. R. B. Ridley, B. H. Cho, and F. C. Lee, "Analysis and interpretation of loop gains of multiloop-controlled switching regulators (power supply circuits)," IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 489-498, 1988.
[53]. C. W. Deisch, "Simple switching control method changes power converter into a current source," in Power Electronics Specialists Conference, IEEE, pp. 300-306, 1978.
[54]. M. M. Bhesaniya and A. Shukla, "Norton Equivalent Modeling of Current Source MMC and Its Use for Dynamic Studies of Back-to-Back Converter System," IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 1935-1945, 2017.
[55]. M. Hankaniemi and T. Suntio, "Small-signal models for constant-current regulated converters," in Industrial Electronics Conference (IECON), IEEE, pp. 2037-2042, 2006.
[56]. J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, "Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter," in Applied Power Electronics Conference and Exposition, 1990, pp. 275-284, 1990.
[57]. V. Vlatkovic, J. A. Sabate, R. B. Ridley, F. C. Lee, and B. H. Cho, "Small-signal analysis of the phase-shifted PWM converter," IEEE Transactions on Power Electronics, vol. 7, no. 1, pp. 128-135, 1992.
[58]. A. Ammous, K. Ammous, M. Ayedi, Y. Ounajjar, and F. Sellami, "An advanced PWM-switch model including semiconductor device nonlinearities," IEEE Transactions on Power Electronics, vol. 18, no. 5, pp. 1230-1237, 2003.
[59]. W. Jianhua, Z. Fanghua, G. Chunying, and C. Ran, "Modeling and analysis of a buck/boost bidirectional converter with developed PWM switch model," in Power Electronics and ECCE Asia (ICPE & ECCE), IEEE, pp. 705-711, 2011.
[60]. K. D. T. Ngo, "Alternate forms of the PWM switch models," IEEE Transactions on Aerospace and Electronic systems, vol. 35, no. 4, pp. 1283-1292, 1999.
[61]. J. Wang, B. Ji, T. Wu, and J. Chen, "Modeling and analysis of a single phase inverter system with PWM switch model," in Industrial Electronics Society, IECON ,IEEE, pp. 5115-5119, 2014.
[62]. I. Cvetkovic, D. Boroyevich, P. Mattavelli, F. C. Lee, and D. Dong, "Unterminated small-signal behavioral model of DC–DC converters," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1870-1879, 2013.
[63]. T. Suntio and D. Gadoura, "Use of unterminated two-port modeling technique in analysis of input filter interactions in telecom DPS systems," in Telecommunications Energy Conference, INTELEC, pp. 560-565, 2002.
[64]. G. Hu, H. Lei, X. Ma, and G. Zhu, "Power sharing strategy of a series-parallel-connected EV charger," in Power Electronics and ECCE Asia, IEEE, 2015, pp. 2898-2903, 2015.
[65]. J. S. Glaser and A. F. Witulski, "Output plane analysis of load-sharing in multiple-module converter systems," IEEE Transactions on Power Electronics, vol. 9, no. 1, pp. 43-50, 1994.
[66]. B. H. Cho and B. Choi, "Analysis and design of multi-stage distributed power systems," in Telecommunications Energy Conference, 1991. INTELEC'91., 13th International, 1991, pp. 220-226: IEEE.
[67]. B. Choi, "Comparative study on paralleling schemes of converter modules for distributed power applications," IEEE Transactions on industrial electronics, vol. 45, no. 2, pp. 194-199, 1998.
[68]. L. R. Lewis, B. H. Cho, F. C. Lee and B. A. Carpenter, "Modeling, analysis and design of distributed power systems," in Power Electronics Specialists Conference, IEEE, pp. 152-159, 1989.
[69]. J. Liu, X. G. Feng, F. C. Lee and D. Borojevich, "Stability margin monitoring for DC distributed power systems via perturbation approaches," IEEE transactions on power electronics, vol. 18, no. 6, pp. 1254-1261, 2003.
[70]. S. Luo, "A review of distributed power systems part I: DC distributed power system," IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 8, pp. 5-16, 2005.
[71]. B. C. Choi, B. H. Cho and S. S. Hong, "Dynamics and control of DC-to-DC converters driving other converters downstream," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 10, pp. 1240-1248, 1999.
[72]. B. C. Choi, J. Kim, B. H. Cho, S. Choi and C. M. Wildrick, "Designing control loop for DC-to-DC converters loaded with unknown AC dynamics," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 925-932, 2002.
[73]. S. A. Sharkh, D. Doerffel, "Rapid test and non-linear model characterisation of solid-state lithium-ion batteries," Journal of Power Sources, vol. 130, pp. 266-274, 2004.
[74]. Broadcom, "Isolation amplifier HCPL-7800."
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/isolation-amplifiers/hcpl-7800

無法下載圖示 全文公開日期 2024/07/10 (校內網路)
全文公開日期 2026/07/10 (校外網路)
全文公開日期 2026/07/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE