簡易檢索 / 詳目顯示

研究生: 吳柏賢
Po-Hsien Wu
論文名稱: 透輝石相玻璃陶瓷介電特性與銀電極共燒效應之研究
Dielectric properties of diopside-based glass-ceramics and diffusion effect of the co-fired silver electrode
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 廖文照
Wen-Jiao Liao
馮奎智
Kuei-Chih Feng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 透輝石玻璃陶瓷微波介電低介電常數
外文關鍵詞: diopside, glass-ceramic, microwave dielectric, low dielectric constant
相關次數: 點閱:444下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微波介電陶瓷材料在智慧型裝置及全球衛星定位系統等無線傳輸及可攜式裝置中扮演重要的角色,本研究探討具新穎性之微波介電材料-透輝石相玻璃陶瓷 (diopside, CaMgSi2O6);透輝石相材料具有低介電常數(dielectric constant, k)、低成本、高品質因子(quality factor, Q*f)及低於900度之燒結溫度,因此透輝石相玻璃陶瓷具有發展低溫共燒技術(LTCC, Low Temperature Co-fired Ceramic)之潛力;然而透輝石相不具有趨近於零的溫度係數共振頻率(temperature coefficient of resonance frequency, τf),因此選擇鈦酸鋅補償透輝石相的溫度係數共振頻率;接下來將改質後之透輝石材料系統於大氣下與銀電極共燒,並探討共燒後之銀電極擴散之影響並進行抑制。
本論文第一部分添加不同比例鈦酸鋅陶瓷粉體,並於825℃~900℃進行兩小時的熱處理;首先可從縮率及密度判斷,試片無法在低於850℃燒結緻密,當熱處理溫度升高到850℃,試片之縮率或密度皆大幅上升;另一方面可從XRD數據中觀察出許多二次相產生,例如:(Zn(1-x)Mgx)SiO4、(Zn(1-x)Mgx)TiO3等等,其中(Zn(1-x)Mgx)SiO4為一低介電常數及高品質因子之矽酸鹽陶瓷,而(Zn(1-x)Mgx)TiO3則具有正值之溫度係數共振頻率,綜合考量介電常數、品質因子及溫度係數共振頻率,透輝石相與30wt%鈦酸鋅陶瓷粉體於875℃熱處理後可得k=9.2, Q*f=8232GHz, τf = -17.7ppm/℃。
電極擴散會影響元件之工作頻率及效率,而銀離子在燒結過程氧化後與玻璃鍵結且往透輝石玻璃陶瓷基材擴散;因而在本論文之第二部份期望設計在大氣下共燒之機制;許多文獻提到抑制電極擴散的方式,例如:添加陶瓷相或是非晶質氧化矽;而從上一章節之研究成果可知,添加鈦酸鋅後已產生鋅鎂之矽酸鹽或鈦酸鹽陶瓷相,故本研究中選用添加非晶質氧化矽以抑制銀電極擴散;奈米尺寸之非晶質氧化矽可在700℃左右形成石英相,有效阻隔銀離子繼續往基材擴散,將改質後之透輝石相玻璃陶瓷添加4wt%非晶質氧化矽後進行SEM-EDS linescan觀察電極擴散距離或含量,可明顯觀察出電極擴散有被抑制的效果。


Microwave dielectric ceramic materials play an important role in the wireless communications and portable devices, such as global positioning systems (GPS) and mobile phones. This study focuses on a novel microwave dielectric material - diopside (CaMgSi2O6) glass-ceramic. Diopside material has a unique character of low dielectric constant (k), low cost, high quality factor (Q*f value) and lower than 900℃ sintering temperature. Therefore, diopside is a potential candidate material for LTCC (Low Temperature Co-fired Ceramic) process. However, the large temperature coefficient of resonance frequency (τf), -60ppm/℃, is unstable to be applied in microwave dielectric components. In this case, ZnTiO3 was chosen to compensate the large negative temperature coefficient of resonance frequency (τf) of diopside glass-ceramics. Followed by this result, the microstructure analysis and electrode inhibition after co-fired with silver electrode were carried out by SEM-EDS in this work.
In the first part of this research, different ratio of ZnTiO3 powder were added into diopside glass-ceramic and the heat treatment were carried out at 825~900℃ for 2 hours. In the beginning, specimens were unable to be densified at 825℃. As increasing heat treatment temperature, the specimens can be densified, from 850℃~ 900℃. Simultaneously, some silicate and titanate secondary phases with excellent microwave dielectric properties were formed, such as (Zn(1-x)Mgx)SiO4 with low dielectric constant and (Zn(1-x)Mgx)TiO3 with positive τf.. Therefore, the microwave dielectric properties of diopside material can be improved by these secondary phases. Finally, the optimal ratio is diopside with 30wt% ZnTiO3 addition, which contains the following key characteristics: k=9.2, Q*f=8232GHz, τf = -17.7ppm/℃
Electrode diffusion usually makes serious damages for components in changing the frequency unexpectedly and overall efficiency of components. Generally, silver ions are oxidized easily then diffuse into diopside glass-ceramics substrate during sintering process. To avoid the phenomena of silver diffusion, a sintering mechanisms without atmosphere control was used. According to references, ceramic phases or amorphous silica are used as both ways can inhibit the electrode diffusion efficiently. As demonstrating in previous chapter, some ceramic phases, silicate or titanate secondary phases, have been formed after adding ZnTiO3 during sintering process, the amorphous silica was chosen to inhibit silver diffusion in this research. Nanoscale amorphous silica forms quartz phase in sintering process around 700℃, and the quartz will become a obstacle for silver diffusion. The efficiency of diffusion effect can be measured by using sem-eds linescan. In conclusion, the optimal solution is to add 4wt% amorphous silica, which diminishes the diffusion effect of silver ions significantly.

摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 背景 1 1-2 目的 3 第二章 文獻回顧 5 2-1 微波介電材料特性與原理 5 2-1-1介電原理與性質 6 2-1-2品質因子 9 2-2 微波介電材料系統的發展 19 2-2-1 HTCC高溫共燒陶瓷系統之微波介電材料 19 2-2-2 LTCC低溫共燒陶瓷系統之微波介電材料 22 2-2-3玻璃陶瓷製程 22 2-2-4成核機制 23 2-2-4-1 均質成核 ( homogeneous nucleation ) 24 2-2-4-2異質成核 ( heterogeneous nucleation ) 26 2-2-5結晶成長機制 26 第三章 實驗流程與分析方法 28 3-1 微波介電陶瓷試片製備過程 28 3-2 實驗儀器與規格 30 3-3 材料性質量測方法 32 3-3-1電子顯微鏡及元素能譜分析 32 3-3-2 XRD相結構分析 32 3-3-3 品質因子與介電常數量測 32 3-3-4 共振溫度頻率係數量測 35 第四章 結果與討論 36 4-1透輝石相玻璃陶瓷添加ZnTiO3陶瓷體共燒之微波介電特性研究 36 4-1-1透輝石相玻璃陶瓷添加ZnTiO3或(Zn0.95Mg0.05)TiO3陶瓷粉體之直徑收縮率與密度量測 38 4-1-2 XRD、微觀結構與介電特性之分析 43 4-1-3 TEM微觀結構分析 50 4-2 透輝石相與銀電極共燒之分析與抑制 60 4-2-1透輝石相玻璃陶瓷銀電極擴散微觀分析 61 4-2-2透輝石相玻璃陶瓷銀電極擴散抑制 65 第五章 結論 69 第六章 參考文獻 71

1. R. J. Cava, Dielectric materials for applications in microwave Communication. Journal of Materials Chemistry. , 11, 54-62, 2001.
2. J. Krupka, Extremely high-Q factor dielectric resonators for Millimeter-wave applications. IEEE Transactions on Microwave theory and Techniques. , 53, 702-712, 2005.
3. J. Wan, Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization. Journal of Electronic Science and Technology of China. , 6, 342-345, 2008.
4. http://global.kyocera.com/prdct/semicon/semi/ltcc/
5. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
6. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
7. Kuei-Chih, Feng, A novel phase-controlling-sintering route for improvement of diopside-based microwave dielectric materials. Ceramics International 41 S526–S529, 2015
8. 趙克玉, 許福永編著,“微波原理與技術”,高等敎育出版社, 2006 .
9. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975
10. Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公公司,2001。
11. Basics of Measuring the Dielectric Properties of Materials Application Note, Agilent,www.agilent.com/find/materials, 2005
12. J. Baker-Jarvis, M. Janezic, B. Riddle, C. Holloway, N. Paulter and J. Blendell,.“Dielectric and Conductor-Loss Characterization and Measurements on ElectronicPackaging Materials,” NIST Technical Note 1520, 2001
13. H. M. O’Bryan JR, and J. Thomson JR, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 522-526, 1974.
14. M. H. Weng, and C. L. Huang, Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering. Japanese Journal of Applied Physics., 39, 3528-3529, 2000.
15. M. H. Weng, T. J. Liang, and C. L. Huang, Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method. Journal of the European Ceramic Society., 22, 1693–1698, 2002.
16. H. Ohsato, S. Nishigaki, and T. Okuda, Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds. Japanese Journal Applied Physics., 31, 3136-3138, 1992
17. Haibo Yang, Magneto-dielectric laminated Ba(Fe0.5Nb0.5)O3-Bi0.2Y2.8Fe5O12 composites with high dielectric constant and high permeability
18. Huanfu Zhoun, Novel middle permittivity ceramic Ba4CoTi11O27: Sintering characteristic, cations distribution, crystal structure and microwave dielectric properties, Ceramics International 41 (2015) 5191–5195
19. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Romanian Journal of Information Science and Technology., 10, 261-268, 2007
20. M. Takata, and K. Kageyama, Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics. Journal of American Ceramic Society., 72, 1955-1959, 1990.
21. Huaizhi Zuoa, Xiaoli Tanga, Huaiwu Zhanga, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications, Ceramics International,2017
22. Hao Luoa, Liang Fanga, Two novel low-firing germanates Li2MGe3O8 (M = Ni, Co) microwave dielectric ceramics with spinel structure, Ceramics International 43 (2017) 1622–1627
23. T. Joseph, and M. T. Sebastian, Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca). Materials Letters., 65, 891-893, 2011.
24. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. Journal of the European Ceramic Society., 26, 2097-2100, 2006.
25. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society., 27, 3063-3067, 2007.
26. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Journal of American Ceramic Society., 71, C11-C17, 1988.
27. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society., 26, 2051-2054, 2006.
28. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Key Engineer Materials, 269, 199–202, 2004.
29. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. Journal of American Ceramic Society., 91, 2747-2750, 2008.
30. Q. L. Zhang, H. Yang, and H. P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society., 28, 605–609, 2008.
31. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics International., 34, 1405-1408, 2008.
32. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程 (第三版),全華圖書,1996.
33. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國83年。
34. W. D. Kingery, and B. Uwmann, Introduction to Ceramics. Second Edition, John Wiley & Sons (SEA) Press., Singapore, 1991.
35. W. Hinz,“Nucleation and Crystal Growth. Journal of Non-Crystalline Solids.”25, 215-260, 1979
36. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.
37. Tomonori Sugiyama∗,Tsutomu Tsunooka, Microwave dielectric properties of forsterite-based solid solutions, Journal of the European Ceramic Society 26 (2006) 2097–2100
38. S. J. MOUSAVI*,THE EFFECT OF SINTERING TIME ON THE ELECTRICAL PROPERTIES OF CaTiO3 CERAMICS, Vol. 9, No. 3, July - September 2014, p. 1059 – 1063, Digest Journal of Nanomaterials and Biostructures
39. Yen-Hwei Chang∗ et.al, Synthesis, formation and characterization of ZnTiO3 ceramics,
40. Ahcéne Chaouchi1,* Sadia Kennour1 et al., Low temperature sintered ZnTiO3 dielectric ceramics with temperature coefficient of dielectric constant near zero, Processing and Application of Ceramics 4 [2] (2010) 75–80
41. 金孝泰、金潤鎬,中華人民共和國發明專利號00809330.X,2001
42. Shenhui Lei†, Huiqing Fan*†, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties, Journal of Materials Chemistry C
43. 張俊堯, 透輝石相玻璃陶瓷低溫共燒擴散效應與高頻天線特性探討,國立台灣科技大學碩士論文,中華民國104年
44. Chi-Shiung Hsi , Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates. J Mater Sci (2011) 46:4695–4700

QR CODE