簡易檢索 / 詳目顯示

研究生: 蔡適宇
Shih-Yu Tsai
論文名稱: 二氧化鈦-氧化鋅複合石墨烯奈米結構之氫氣感測器
TiO2-ZnO/ Graphene hybrid nanostructures for hydrogen gas sensor
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 許正良
Cheng-Liang Hsu
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 氧化鋅奈米柱二氧化鈦石墨烯氫氣感測器
外文關鍵詞: ZnO nanorods,, Titanium oxide, Graphene, Hydorgen gas sensor
相關次數: 點閱:342下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分為二部分,第一部分探討不同成長濃度的氧化鋅奈米柱及不同數量的二氧化鈦複合氧化鋅奈米柱之氫氣感測器,並進行物性及電性之分析;第二部分探討在基底加入由化學氣相沉積法製造的石墨稀,接著成長氧化鋅奈米柱及不同數量的二氧化鈦複合氧化鋅奈米柱之氫氣感測器,並進行物性及電性之分析。
研究發現,氧化鋅奈米柱在成長濃度為45 mM時,擁有最大的氧缺陷比值,其在500ppm的氫氣流量下,靈敏度為26.3%;接著再在水熱法成長氧化鋅奈米柱的時候,添加不同數量之二氧化鈦粉末,造成響應值提升,其原因有二個,第一個原因是二氧化鈦附著在氧化鋅奈米柱的表面,整體的比表面積提升,導致更多的氧氣吸附;第二個原因是氧化鋅與二氧化鈦兩種材料接觸時,因為功函數的不同,導致二氧化鈦的電子會從導帶轉移到氧化鋅的導帶直到費米能階達導同個水平,在氧化鋅和二氧化鈦接面形成空乏層,使電阻增加,當在氫氣的環境下,自由電子濃度注入,空乏層寬度降低,使電阻下降,導致氫氣響應值的提升。二氧化鈦複合氧化鋅奈米柱在500ppm的氫氣流量下之靈敏度提升為54.9%。
為了使費米能階平衡,氧化鋅和石墨烯的交界處會有些微能帶彎曲現象,使空乏區形成,但其較二氧化鈦與氧化鋅接面的空乏區小,且因氧化鋅之功函數比石墨烯大,當在氫氣的環境中,自由電子可以輕易的從氧化鋅的導帶傳到石墨稀的導帶,使空乏層寬度降低,電阻下降,氧化鋅奈米柱複合石墨烯在500ppm的氫氣流量下之靈敏度提升為53.6%。
最後綜合二氧化鈦與石墨烯之優點與氧化鋅奈米柱結合,以更提升氫氣感測響應值,二氧化鈦-氧化鋅複合石墨烯奈米結構在500ppm的氫氣流量下之靈敏度提升為75.6%。


Hydrogen (H2) is known as clean energy source for future generation requirements. However, it is dangerous when leak about 4 vol % in the atmosphere, therefore it is essential to sense with suitable sensors. At present, there are many types of the commercially available H2 sensors with semiconductors so on. In this context, ZnO materials have gained significant attention in hydrogen gas sensing applications due to their excellent properties. However, the stability, poor response time and inferior recovery at room temperature limit their use in high-performance real-time gas sensors. Herein, we report highly enhanced H2-gas-sensing performance of a TiO2-doped ZnO hybrid composites on graphene substrate.
First section of this study focus on the fabrication of hybrid gas sensors using TiO2-doped ZnO nanorods (TiO2-ZNR). In the second section, we develop novel nanostructure using TiO2-ZNR composites on graphene substrates and studied their structural and gas sensing properties. The systematic investigations were revealed that adding different amount of TiO2 in the hydrothermal process of ZNRs, strongly influence the gas sensing performance. The TiO2-ZNR based gas sensor shows superb enhancement in hydrogen sensitivity of 54.9 % comparing to ZNR gas sensor (26.3%). It is believed that the TiO2 nanoparticles onto ZNR induces more active sites for the adsorption of O2. Moreover, the electrons transfer from conduction band of TiO2 to that of ZnO, leading to higher conductance of TiO2-ZNR nanocomposites than that of the pure ZNR.
Finally, TiO2-doped ZNR hybrid composites on graphene exhibits an ultrahigh sensor response even at small detection level. This TiO2-doped ZNR/Graphene hybrid sensors exhibits the superior sensitivity of 75.6%, which is overwhelmingly better than ZNRs (26.3%), TiO2-ZNR (54.9 %) and ZNRs/graphene (53.6 %). The enhancement is due to the efficient O2 defects in the TiO2-doped ZNR/graphene hybrid, also, the chemisorbed O2 ions in the surface react with H2, leading to desorption of H2O, and release a huge number of electrons to the conduction band. Thus, the accumulation layer is formed and the depletion region is decreased and enhanced the sensitivity. The outstanding features such as selectivity, stability and repeatability of TiO2-doped ZNR/Graphene, makes them as a promising candidate for high performance gas sensors.

目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 III 目錄 Ⅳ 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻探討 3 2.1 氧化鋅材料特性簡介 3 2.2 一維奈米材料成長機制 5 2.2.1水熱法成長機制 5 2.2.2 VLS法成長機制 6 2.2.3電化學沉積法 8 2.3 石墨烯特性簡介 10 2.3.1石墨烯的基本性質與結構 10 2.3.2石墨烯成長機制與製備方法 13 2.4 二氧化鈦性質介紹 18 2.5 氣體感測器介紹 22 2.5.1金屬氧化物半導體型 22 2.5.2電化學固態電解質型 23 2.5.3觸媒燃燒型 23 2.5.4表面聲波型 24 2.6 氧化鋅與氫氣感測 25 第三章 實驗方法 26 3.1 實驗設計與流程 26 3.2 製備之材料介紹 28 3.3 基板清洗 29 3.4 水熱法(Hydrothermal method)成長氧化鋅奈米柱 30 3.4.1 濺鍍氧化鋅種子層 30 3.4.2 成長氧化鋅奈米柱 31 3.5 化學氣相沉積法成長石墨烯 33 3.5.1 銅箔前處理 33 3.5.2 石墨烯成長參數 34 3.6 石墨烯轉移 36 3.7 儀器設備與材料分析方法 39 3.7.1 場發射掃描式電子顯微鏡(FE-SEM) 39 3.7.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 40 3.7.3 X射線繞射儀(X-ray diffraction,XRD) 40 3.7.4 拉曼光譜儀(Raman spectrum) 42 3.7.5 光激發螢光光譜儀(Photoluminescence,PL) 43 3.7.6 高真空量測系統(Gas sensor, GS) 44 第四章 氧化鋅及二氧化鈦-氧化鋅複合奈米結構之氫氣感測 45 4.1 氧化鋅奈米柱之特性分析 45 4.1.1 表面型態分析 45 4.1.2 X-ray繞射儀分析 47 4.1.3 光激發螢光頻譜儀分析 48 4.1.4 氧化鋅奈米柱之氫氣感測分析 49 4.2 二氧化鈦-氧化鋅奈米柱之特性分析 53 4.2.1 表面型態分析 53 4.2.2 X-ray繞射儀分析 58 4.2.3 光激發螢光頻譜儀分析 60 4.2.4 二氧化鈦-氧化鋅奈米柱之氫氣感測分析 61 第五章 氧化鋅及二氧化鈦-氧化鋅複合石墨烯之氫氣感測 67 5.1 石墨烯之特性分析 67 5.1.1 表面型態分析 68 5.1.2 拉曼光譜儀分析 69 5.1.3 石墨烯之氫氣感測分析 70 5.2 氧化鋅奈米柱複合石墨烯之特性分析 72 5.2.1 表面型態分析 72 5.2.2 X-ray繞射儀分析 75 5.2.3 光激發螢光頻譜儀分析 76 5.2.4 氧化鋅奈米柱複合石墨烯之氫氣感測分析 77 5.3 二氧化鈦-氧化鋅奈米柱複合石墨烯之特性分析 81 5.3.1 表面型態分析 81 5.3.2 X-ray繞射儀分析 86 5.3.3 光激發螢光頻譜儀分析 88 5.3.4 二氧化鈦-氧化鋅奈米柱複合石墨烯之氫氣感測分析 89 第六章 結論與未來展望 93 6.1 結論 94 6.2 未來展望 97 參考文獻 98

[1]. Xueying Kou, Ning Xie, Fang Chen, Tianshuang Wang, Lanlan Guo, Chong Wang, Qingji Wang, Jian Ma, Yanfeng Sun, Hong Zhang, Geyu Lu, "Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping", Sensors and Actuators B 256 (2018) 861–869.
[2]. R. Sankar Ganesha,b, M. Navaneethanb,c,, V.L. Patil d, S. Ponnusamy b, C. Muthamizhchelvanb, S. Kawasaki e, P.S. Patil d, Y. Hayakawaa,c, "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature", Sensors and Actuators B 255 (2018) 672–683.
[3]. C.W. Zou, J. Wang, W. Xie, "Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/ TiO2 nanoparticles heterojunction composites ", Journal of Colloid and Interface Science 478 (2016) 22–28..
[4]. H W Kroto , J R Heath, S C O'Brien, R F Curl and R E Smalley, C60: Buckminsterfullerene, Nature, 318(No.6042), 162-163,(1985).
[5]. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F., "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene", Science.Nov 27;258(5087):1474-6 (1992).
[6]. 徐育婷, 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器, 碩士論文, 國立成功大學微電子工程研究所 (2010).
[7]. Fan Gao et al, "Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes", Appl. Phys. Lett. 108 (2016) 261103.
[8]. Jialun He , Xuanli Zheng , Xuda Hong , Weiping Wang , Yiyan Cao , Ting Chen , Lijing kong , Yaping Wu , Zhiming Wu a, Junyong Kang , "Enhanced field emission of ZnO nanowire arrays by the control of their structures", Materials Letters 216 (2018) 182–184.
[9]. Adhimoorthy Saravanan et al, “Fast Photoresponse and Long Lifetime UV Photodetectors andField Emitters Based on ZnO/Ultrananocrystalline Diamond Films”, Chem. Eur.J. 21 (2015) 16017-16026.
[10]. Cheng-Liang Hsu et al, “A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate”, RSC Adv. 6 (2016) 74201-74208.
[11]. Ana Burgos , Rodrigo Schrebler , Gustavo Cáceres, Enrique Dalchiele, Humberto Gómez,” Electrode position of ZnO Nanorods as Electron Transport Layer in a Mixed Halide Perovskite Solar Cell”, Int. J. Electrochem. Sci., 13 (2018) 6577 – 6583.
[12]. Xiaolan Deng, Lilan Zhang, Jing Guo, Qinjun Chen, Jianmin Ma,” ZnO enhanced NiO-based gas sensors towards ethanol”, Materials Research Bulletin 90 (2017) 170–174.
[13]. Jiangyang Liu, Tianshuang Wang, Boqun Wang, Peng Sun, Qiuyue Yang, Xishuang Liang, Hongwei Song, Geyu Lu,” Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material”, Sensors and Actuators B 245 (2017) 551–559.
[14]. Zhi-Feng Shi et al,” Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes”, Phys. Chem. Chem. Phys. 17 (2015) 13813-13820.
[15]. Ü. Özgür et al, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
[16]. A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases”, J. Appl. Phys. 102 (2007) 071101.
[17]. Vladimir L. Solozhenko et al, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure”, J. Phys. Chem. A. 115 (2011) 4354-4358.
[18]. Hadis Morkoç andÜmit Özgür, “General properties of ZnO. Zinc Oxide Fundamentals”, Materials and Device Technology (2009) 1-76.
[19]. R. Alexandrescu, A. Crunteanu, R. E. Morjan, I. Morjan, F. Rohmund, L. K. L. Falk, G. Ledoux, and F. Huisken, “Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition”, Infrared Physics and Technology, 44 (2003) 4350.
[20]. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y.H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, “Nanoscale silicon wires synthesized using simple physical evaporation”, Applied Physics Letters, 72 (1998) 34583461.
[21]. P. Yang, “The chemistry and physics of semiconductor nanowires”, Mrs Bulletin, 30 (2005) 8591.
[22]. Y. F. Zhang, Y. H. Zhang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon nanowires prepared by laser ablation at high temperature”, Applied Physics Letters, 72 (1998) 18351838.
[23]. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation”, Applied Physics Letters, 73 (1998) 39023905.
[24]. Z. W. Pen, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, 291 (2001) 19471949.
[25]. C. J. Lee and J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition”, Applied Physics Letters, 77 (2000) 33973400.
[26]. S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro, “Purification of carbon nanotubes grown by thermal CVD”, Physica E: Low-dimensional Systems and Nanostructures, 37 (2007) 5861.
[27]. Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy”, Applied Physics Letters, 83 (2003) 26652668.
[28]. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Gosele, “Silicon nanowhiskers grown on (111) Si substrates by molecular-beam epitaxy ”, Applied Physics Letters, 84 (2004) 49684970.
[29]. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers”, Applied Physics Letters, 80 (2002) 10581060.
[30]. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physical B, 403 (2008) 37133717.
[31]. S. Dalui, S. N. Das, R. K. Roy, R. N. Gayen, and A. K. Pal, “Aligned Zinc Oxide nanorods by hybrid wet chemical route and their field emission properties”, Thin Solid Films, 516 (2008) 82198226.
[32]. M. Eskandari, V. Ahmadi, and S. H. Ahmadi, “Low temperature synthesis of ZnO nanorods by using PVP and their characterization”, Physical B, 404 (2009) 19241928.
[33]. S. R. Hejazi, H. R. M. Hosseini, and M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism”, Journal of Alloys and Compounds, 455 (2008) 353357.
[34]. O. Gunawan and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells”, Solar Energy Materials and Solar Cells, 93 (2009) 13881393.
[35]. Vergés, M. Andrés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, Journal of the Chemical Society, Faraday Transactions86.6 (1990) 959-963.
[36]. Vayssieres, Lionel, et al. “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, The Journal of Physical Chemistry B105.17 (2001) 3350-3352.
[37]. Y.H. Yang et al, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chem. Phys. Lett. 252 (2005) 248-251.
[38]. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Applied Physics Letters, 4 (1964) 8991.
[39]. N. Wang, Y. Cai, and R.Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 151.
[40]. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 (2001) 18971899.
[41]. Cembrero, J, et al. "Nanocolumnar ZnO films for photovoltaic application", Thin Solid Films 451 (2004): 198-202.
[42]. Mensah, Samuel L., et al. "Formation of single crystalline ZnO nanotubes without catalysts and templates", Applied physics letters 90.11 (2007): 113108.
[43]. 石墨烯的結構、性質與應用https://read01.com/J6PLkB.html#.WwKyCEiFNPY
[44]. 石墨烯與二維材料-微奈米科技研究中心-林志堅 http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/2601/435955689.pdf
[45]. A. K. Geim, K. S. Novoselov. "The rise of graphene", Nature Mater, 6, 183 (2007).
[46]. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau Superior thermal; "conductivity of single-layer graphene", Nano Lett, 8,902-907(2008).
[47]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,
H.L. Stormer. "Ultrahigh electron mobility in suspended graphene", Solid State Commun, 146,351-355 (2008).
[48]. Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi & Byung Hee Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature 457, 706-710, (2009)
[49]. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene", Science,: Vol. 320 no. 5881 p. 1308,( 2008)
[50]. B. C. Brodie et al., Philos. Trans. R. Soc. London, “On the atomic weight of graphite”, Journal Article 149 (1959) 249.
[51]. W.S Hummers, R.E Offeman, J. Am. Chem. Soc., “Preparation of Graphitic Oxide”, ACS Publications 80 (1958) 1339-1339.
[52]. Y. Xu et al., J. Am. Chem. Soc., “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets”, ACS Publications 130 (2008) 5856.
[53]. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai. “Highly conducting graphene sheets and Langmuir-Blodgett films”. Nature Nanotech 3 (2008) 538-542.
[54]. Yu Zhang, Jiale Du, Shuai Tang, Pei Liu, Shaozhi Deng, Jun Chen, Ningsheng Xu . "Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology". Nanotechnology 23 015202 (6pp) (2012)
[55]. U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports
48(2003) 53-229
[56]. D. A. H. Hanaor, C. C., “Sorrell Review of the anatase to rutile phase
transformation”, J Mater Sci (2011) 46 855–874
[57]. 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
[58]. 黃炳照,”固態電解質電化學氣體感測器”, Chemistry (The Chinese Chem.Soc., Taipei), 59, pp. 207-217, 2001.
[59]. C.sonics , A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics Symposium Proc., pp. 549-554, 1988.
[60]. A. D’Amico, A. Plama, and E. Verona, “Surface acoustic wave hydrogen sensor”, Sens. Acuatros, 3, pp. 31-39, 1982.
[61]. 張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄, “表面聲波氣體感測器之研製與應用”, Chemistry (The Chinese Chem. Soc., Taipei) December, pp. 487-498, 2007.
[62]. Deepa Kathiravan, Bohr-Ran Huang ,and Adhimoorthy Saravanan,”Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors”, ACS Appl. Mater. Interfaces 2017, 9, 12064−12072.
[63]. 國立台灣科技大學X光繞射儀實驗室
[64]. Madhumita Sinha, Rajat Mahapatra, Biswanath Mondal, Takahiro Maruyama, and Ranajit Ghosh, ” Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique”, J. Phys. Chem. C 2016, 120, 3019−3025
[65]. LeonWhite, YoungmiKoo, YeoheungYun, and Jagannathan Sankar, “TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation”, Journal of Nanomaterials Volume, (2013).
[66]. PavuluriSrinivasu, SuryaPrakashSingh, AshrafulIslam, and Liyuan Han, “Novel Approach for the Synthesis of Nanocrystalline Anatase Titania and Their Photovoltaic Application”, Advances in OptoElectronics Volume, (2011).
[67]. Tahseen Kamal, “High performance NiO decorated graphene as a potential H2 gas sensor”, Journal of Alloys and Compounds 729 (2017) 1058-1063.
[68]. Vijendra Singh Bhati, Sapana Ranwa, Mattia Fanetti, Matjaz Valantc, Mahesh Kumar, “Efficient hydrogen sensor based on Ni-doped ZnO nanostructures byRF sputtering”, Sensors and Actuators B 255 (2018) 588–597.
[69]. Sunghoon Park, Suyoung Park, Sangmin Lee, Hyoun Woo Kim, Chongmu Lee, “Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors”, Sensors and Actuators B 202 (2014) 840–845.
[70]. K. Vijayalakshmi, K. Karthick, “Growth of highly c-axis oriented Mg:ZnO nanorods on Al2O3 substrate towards high-performance H2 sensing”, International journal of hydrogen energy 39 (2014) 7165-7172.
[71]. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, “The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing”, International journal of hydrogen energy 37 (2012) 15423-15432.

QR CODE