簡易檢索 / 詳目顯示

研究生: 吳俊霖
Jynu-lin Wu
論文名稱: 摻鉻鎂橄欖石寬頻光源斜線效率的影響因素
Factors affecting the slope efficiency of Cr:forsterite broadband light source
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 黃升龍
Sheng-lung Huang
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 摻鉻鎂橄欖石晶體光纖自發輻射放大寬頻光源光學同調斷層掃描晶纖的傳輸損耗與吸收係數晶纖長度對於ASE功率的增進激發光源極化與波長的影響環境溫度的改變對ASE斜線效率的影響
外文關鍵詞: Cr-Forsterite Crystal Fiber, Amplified Spontaneous Emission, Optical Coherence Tomography, the propagation loss and absorption coefficient, the length of crystal fiber, the polarization and wavelength of the pump lase, and ambient temperature
相關次數: 點閱:379下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用半導體雷射激發Cr4+:Forsterite所放射的頻譜範圍1.1~1.4μm不僅對於生物的軟性組織有極小的吸收,對於光通訊也可避開1.4μm附近水分子吸收。因此,Cr4+:Forsterite晶體作為寬頻光源有極佳的發展潛力。

本論文利用雷射基座生長法(LHPG)生長出纖核直徑70μm的Cr4+:Forsterite單纖衣晶體光纖,藉由理論分析與特性量測來探討各種因素對於ASE寬頻光源斜線效率的影響,包括晶纖的傳輸損耗與吸收係數、晶纖長度對於ASE功率的增進、激發光源極化與波長的影響、環境溫度的改變對ASE斜線效率的影響。目前晶體光纖纖核直徑固定為70μm。

用半導體雷射907nm、2.16W激發下,長度10.6cm的Cr4+:Forsterite單纖衣晶體光纖可產生1mW、中心波長1116nm、3dB頻寬200nm的ASE寬頻光源。,用雷射二極體1550nm激發下,所量測出來的晶體光纖傳輸損耗範圍是0.006~0.02cm-1。用極化激發光源1064nm激發下,晶纖內a、b晶軸的ASE斜線效率差距為40~80%。改變環境溫度可了解ASE斜線效率對於環境溫度的衰退幅度為0.78%/℃。


The emission spectrum of Cr4+:Forsterite covers 1.1 to 1.4μm, with minimal absorption for biological soft tissue and for standard optical fibers having OH- absorption near 1.4μm. Therefore, Cr4 +: Forsterite crystal based broadband light sources have excellent potential.

In this research, the factors that determine the slope efficiency of amplified spontaneous emission(ASE) broadband light source were explored through theory and experiments. They included the propagation loss and absorption coefficient of crystal fiber, the length of crystal fiber, the polarization and wavelength of the pump laser, and ambient temperature. The core size of fiber was limited to 70μm in the meantime.

ASE power of 1mW was obtained from a 10.6cm-long Cr4 +: Forsterite single-clad crystal fiber when pumped with a non-polarized 907nm laser diode of 2.16W. Broadband emission spectrum exhibited a 3dB bandwidth of 200nm and a peak wavelength of 1116nm. The propagation loss of crystal fibers was in a range of 0.006~0.02cm-1 measured with a 1550nm laser diode. The ASE slope efficiency difference between a-axis and b-axis of Cr4 +: Forsterite crystal fiber was 40%~80% measured with a polarized 1064nm laser diode. The temperature sensitivity of the ASE slope efficiency was -0.78%/℃.

致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖片目錄 vi 表格目錄 ix 第一章 緒論 1 第二章 Cr4+:Forsterite 11 2.1 Cr4+:Forsterite晶體之材料特性 11 2.2 Cr4+:Forsterite晶體之光學特性 16 第三章 Cr4+:Forsterite晶體光纖基本製程 22 3.1 晶體光纖生長架構與方法 22 3.2 晶體光纖之金屬包覆 28 3.3 晶體光纖之研模與拋光 34 第四章 光纖原理與設計 37 4.1 光纖波導原理 37 4.2光纖放大原理與自發輻射放大 42 4.3摻鉻鎂橄欖石晶體光纖設計以增進寬頻光源功率 54 4.3.1增加Cr4+濃度 58 4.3.2雙纖衣晶體光纖 60 4.3.3光纖長度最佳化的探討 61 4.3.4極化的影響與生長軸的選擇 66 第五章 光纖光學特性量測架構與結果 73 5.1 Cr4+:Forsterite晶體光纖傳輸損耗 73 5.2 Cr4+:Forsterite晶體光纖吸收係數 84 5.3 Cr4+:Forsterite晶體光纖在不同環境溫度下ASE效率變化 86 第六章 結論與未來展望 93 參考文獻 97

[1]B.R. Wu, C.F. Lin, L.W. Laih, and T.T. Shih, "Extremely broadband InGaAsP/InP superluminescent diodes, " Electron. Lett., 36, 2093 (2000).

[2]K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt.,26,1603 (1987).

[3]B. Danielson and C. Whittenberg, “Guided-wave with micrometer resolution,” Appl. Opt., 26, 2836 (1987).

[4]D. Engin, “Complex optical low coherence reflectometry with tunable source,” IEEE Photon. Technol. Lett., 16, 1346 (2004).

[5]D.Anderson and F. Bell, “Optical time-domain reflectometry,” Tektronix Inc., Wilsonville (1997).

[6] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J.Fujimoto, “Optical coherence tomography,” Science, 254, 1178 (1991).

[7]Chih-Wei Lu, Meng-Tsan Tsai, Yih-Ming Wang, Cheng-Kuang Lee, Yean-Woei Kiang, and C. C. Yang,” High-resolution Swept-Source Optical Coherence Tomography with the Frequency-sweeping the Broadened Spectrum of a fs Cr:forsterite Laser,” Optical Society of America(2007)
[8] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51(1986).

[9] Cheong, W.F., P.S. A., and A.J. Welch, "A review of optical properties of biological tissues", IEEE Journal of Quantum Electronics(1990).

[10] V. Petricevic, S.K. Gayen, R.R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, "Laser action in chromium-doped forsterite," Applied Physics Letters, 52, 1040 (1988).

[11] V. Petricevic, S.K. Gayen, and R.R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?," Applied Physics Letters, 53, 2590 (1988).

[12] V. Petridevi6, S. K. Gayen,* and R. R. Alfano,” Continuous-wave laser operation of chromium-doped forsterite,” Received September 21, 1988; accepted March 12, (1989).

[13] Alphan Sennaroglu, Clifford R. Pollock, and Howard Nathel,” Generation of Tunable Femtosecond Pulsesin the 1.21-1.27 pm and 605-635 nmWavelength Region by Using a Regeneratively Initiated Self-Mode-Locked Cr:Forsterite Laser,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 30, NO. 8, AUGUST (1994).

[14] Antonio Agnesi, Enrico Piccinini, and Giancarlo Reali,” Threshold optimization of all-solid-state Cr:forsterite lasers,” J. Opt. Soc. Am. B/ Vol. 17, No. 2/February (2000).

[15] Alphan Sennaroglu1*, Franz X. Kaertner2, and James G. Fujimoto2,” Low-threshold, room-temperature femtosecond Cr4+:forsterite laser,” Optical Society of America(2007)

[16] Shih-Hsuan Chia1, Tzu-Ming Liu2, Anatoly A. Ivanov3, Aleksei M. Zheltikov4, and Chi-Kuang Sun1,5 ,”A femtosecond Cr4+:forsterite laser generating 1.4W output power,” Shih-Hsuan Chia1, Tzu-Ming Liu2, Anatoly A. Ivanov3, Aleksei M. Zheltikov4, and Chi-Kuang Sun1,5,” Optical Society of America(2010)

[17] Alphan Sennaroglu,” Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B/Vol. 18, No. 11/November (2001).
[18]王先佑,” 摻鉻鎂橄欖石晶體光纖製作與特性量測”,國立台灣科技大學電子工程所碩士論文(2009).
[19] Cz. Koepke, K. Wisniewski, and M. Grinberg, "Excited state spectroscopy of chromium ions in various valence states in glass," J. of Alloys and Compounds, 341, 19 ( 2002).

[20] Richard MoncorgC, Member, IEEE, G. Cormier, D. J. Simkin, and J. A. Capobianco,” Fluorescence Analysis of Chromium-Doped Fonterlte,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. I, JANUARY (1991).

[21]Weiyi Jia,Huimin Liu,S.Jaffe,and W.M.Yen, “Spectroscope of Cr3+ and Cr4+ ions in forsterite,” Physical Review B volume 43,Number 7 (1991)

[22] N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov,’’ Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,’’ OPTICS LETTERS / Vol. 23, No. 13 / July 1(1998).

[23] N.V. Kulesho+‘v*, V.G. Shcherbitsky”, V.P. Mikhailov”, S. Hartungb, T. Dangerb, S. Kiickb,K. Petermannb, G. Huberb,” Excited-state absorption and stimulated emission measurements in Cr4 + : forsterite,” Journal of Luminescence 75(1997).

[24] Alphan Sennaroglu, Clifford R. Pollock, and Howard Nathel,” Generation of Tunable Femtosecond Pulses in the 1.21-1.27 pm and 605-635 nm Wavelength Region by Using a Regeneratively Initiated Self-Mode-Locked Cr:Forsterite Laser,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 30, NO. 8, AUGUST (1994).

[25] Z. Burshtein a,*, Y. Shimony b,” Refractive index dispersion and anisotropy in Cr4:Mg2SiO4,” Optical Materials 20 (2002) 87–96 23 April (2002)

[26] Zhang Shoudu, Wang Siting, Shen Xingda, Wang Haobing, Zhong Heyu, Zhang Shunxing, and Xu Jun, "Czochralski growth of rare-earth orthosilicates-Y2SiO5 single crystals," Journal of Crystal Growth, 197, 901 (1999).

[27] G. A. Magel, M. M. Fejer, and R. L. Byer, " Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3, " Appl. Phys. Lett., Vol. 56, pp. 108-110, 1990.

[28]L. Hesseling, and S. Redfield, "Photorefractive holographic recording in strontium barium niobate fiber, " Opt. Lett., Vol. 13, pp. 877-879,1988.

[29]R. S. Feigelson, D. Gazit, and D. K. Fork, " Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method, " Science, Vol. 240, pp. 1642-1645, 1988.
[30]張金倉,霍玉晶,何豫生,"激光加熱浮區生長強織構高溫超導晶纖的研究",中國激光,第20卷,第8期,1993年.

[31]G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley (1997).

[32]M. M. Fejer, "Crystal fibers: Growth dynamics and nonlinear optical interactions," Ph.D. dissertation, Standard University, Standford, CA (1986).

[33] Alphan Sennaroglu,”Broadlytunable Cr4+-doped solid-state lasers
in the near infrared and visible,” Progress in Quantum Electronics(2002)
[34] Isabell Thomann, Leo Hollberg, Scott A. Diddams, and Randy Equall,” Chromium-doped forsterite: dispersion easurement with white-light interferometry,” 20 March Vol. 42, No. 9 _ APPLIED OPTICS(2003)
[35] Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto,” Spectroscopic and Laser Oscillation Characteristics of Highly Cr4+-Doped Forsterite,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 32, NO. 8, AUGUST (1996).
[36] Alphan Sennaroglu,” Broadlytunable Cr4+-doped solid-state lasers in the near infrared and visible,” Quantum Electronics(2003).

QR CODE