簡易檢索 / 詳目顯示

研究生: 謝政廷
Cheng-Ting Hsieh
論文名稱: 含醇類與酯類水溶液系統的汽液液相平衡研究
Vapor-Liquid-Liquid Equilibria for Aqueous Mixtures Containing Alcohols and Esters
指導教授: 李明哲
Ming-Jer Lee
林河木
Ho-Mu Lin
口試委員: 李亮三
Liang-sun Lee
杜建勳
Chein-Hsiun Tu
李夢輝
Meng-Hui Li
張傑明
Chieh-Ming J. Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 185
中文關鍵詞: 汽液液相平衡丙二醇甲醚丙二醇甲醚醋酸酯醋酸甲酯丙酸甲酯異丙醇丙酸異丙酯
外文關鍵詞: vapor-liquid-liquid equilibria, water, propylene glycol monomethyl ether (PGME), propylene glycol methyl ether acetate, methyl acetate, methyl propionate, isopropanol, isopropyl propionate
相關次數: 點閱:525下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用一套具有視窗的靜態式裝置,量取恆溫汽液液平衡性質,其量測溫度介於313.24 K至373.15 K之間。本研究實驗量測了水+丙二醇甲醚醋酸酯、水+醋酸甲酯、水+丙酸甲酯及水+丙酸異丙酯的雙成份汽液液平衡性質。本研究也分別量測水+丙二醇甲醚醋酸酯+丙二醇甲醚、水+醋酸甲酯+甲醇、水+丙酸甲酯+甲醇、水+醋酸甲酯+丙酸甲酯及水+丙酸異丙酯+異丙醇的三成份汽液液平衡性質。分別以NRTL及UNIQUAC模式搭配Hayden-O’Connell (HOC) 模式,並採用與溫度線性關係的參數,能夠把雙成分水溶液系統的相互溶解度數據關聯得很好。對於type-I LLE 類型的三成份系統,預測結果證實使用關聯雙成分配對的VLE或VLLE數據所得的參數,無法準確地估算其三成份汽液液平衡性質。在本研究裡,三成份汽液液平衡數據也用於檢驗多種版本之UNIFAC模式的合適性。以同時調整NRTL及UNIQUAC模式中的模式參數的方式關聯三成份汽液液平衡數據,可大幅地改善對三成份汽液液平衡性質的描述。
本研究使用體積立方型的Soave-Redlich-Kwong (SRK)狀態方程式估算酯化反應混合物系統之汽液及汽液液平衡性質,研究中分別採用三種α函數來描述吸引力項能量參數a的溫度效應,並搭配van der Waals (vdW)單一流體混合律或Chung-Twu (CT)混合律。計算結果顯示以SRK-T/CT-UNIFAC-Lyngby模式(SRK狀態方程式搭配T型α函數及引入UNIFAC-Lyngby模式的CT混合律)具有較佳的預測能力,此種方法不但可準確地預測雙成份汽液平衡性質,亦能合理預估三成份水溶液混合物之汽液液相平衡行為,此法僅需純質成份之蒸汽壓數據。另外,SRK-T/CT-UNIFAC-LL模式,則對type-II液液平衡系統有不錯的預測效果。


A static-type apparatus equipped with a visual cell was utilized in the present study to measure isothermal vapor-liquid-liquid equilibrium (VLLE) data over a temperature range of 313.24 to 373.15 K. The binary VLLE properties were determined experimentally for mixtures of water + propylene glycol methyl ether acetate (PGMEA), water + methyl acetate, water + methyl propionate and water + isopropyl propionate. The ternary VLLE properties were also measured for mixtures of water + PGMEA + propylene glycol monomethyl ether (PGME), water + methyl acetate + methanol, water + methyl propionate + methanol, water + methyl acetate + methyl propionate and water + isopropyl propionate + isopropanol. The mutual solubility data of the binary aqueous systems could be correlated well by the NRTL and the UNIQUAC models accompanied with the Hayden-O’Connell (HOC) model over a wide temperature range as linearly temperature-dependent parameters were adopted. The predicted results proved that the ternary VLLE properties are unable to be estimated accurately by using the parameters determined from the phase equilibrium data of the constituent binaries for the type-I LLE systems. The ternary VLLE data were also used to test the validity of various versions of the UNIFAC model. The representation of the ternary VLLE properties was substantially improved as the parameters of the NRTL and the UNIQUAC models were determined simultaneously from the ternary VLLE data.
In the present study, the Soave-Redlich-Kwong (SRK) equation, a cubic equation of state, was utilized to calculate VLE and VLLE properties of mixtures of esterification by using three types of α function that accounts for the temperature dependence of the energy parameter (a) in the attractive term. The selected mixing rules in this study are the van der Waals (vdW) one-fluid mixing rules and Chung-Twu (CT) mixing rules. The calculated results showed that SRK-T/CT-UNIFAC-Lyngby (the SRK equation with the T type α function and the CT mixing rules embedded the UNIFAC-Lyngby model) model, in general, not only predicted accurately the binary VLE properties, but also represented the ternary VLLE phase behavior reasonably well. The vapor pressure data of the pure substances are the only required property for SRK-T/CT-UNIFAC type model. Moreover, the predicted results of the SRK-T/CT-UNIFAC-LL model were satisfactory for the type-II LLE systems.

English Abstract Chinese Abstract Acknowledgement Table of Contents List of Figures List of Tables Nomenclatures Chapter 1 Introduction 1.1 Reactive distillation 1.2 Application of the ester 1.3 Literature review 1.3.1 Production of PGMEA 1.3.2 Production of methyl acetate and methyl propionate 1.3.3 Production of isopropyl propionate 1.4 Methods of VLLE measurement 1.5 Phase equilibrium calculation 1.6 Applications of the UNIFAC models 1.7 Scopes of this study 1.8 Outline of the dissertation Chapter 2 Experimental Section 2.1 Apparatus 2.2 Experimental procedure 2.3 Composition analysis 2.4 Materials 2.5 Experimental results 2.5.1 Binary VLLE system 2.5.2 Ternary VLLE system 2.5.3 Othmer-Tobias equation Chapter 3 Phase Equilibrium Calculations 3.1 VLE calculation 3.2 VLLE calculation 3.2.1 Binary VLLE system 3.2.2 Ternary VLLE prediction 3.2.3 Estimation of varied versions of UNIFAC 3.2.4 Ternary VLLE data correlation Chapter 4 Soave Equation of State with Various α Functions and Mixing Rules for Multiphase Equilibrium Calculation 4.1 α Functions 4.2 Mixing rules 4.3 Correlation with the SRK equation of state 4.3.1 Determination of pure component parameter for α Function 4.3.2 Phase equilibrium calculation with the vdW mixing rules 4.3.3 Phase equilibrium calculation with CT mixing rules 4.4 Application of SRK-T/CT-UNIFAC type model to multiphase equilibrium prediction 4.4.1 Prediction of vapor-liquid and vapor-liquid-liquid equilibrium properties for binary systems 4.4.2 Prediction for ternary LLE and VLLE properties Chapter 5 Conclusions References 作者簡介

Abrams, D. S. and J. M. Prausnitz, “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Free Energy of Partly or Completely Miscible Systems,” AIChE J., 21, 116-128 (1975).

Agreda, V. H., L. R. Partin, “Reactive Distillation Process for the Production of Methyl Aceate,” U. S. Patent, 4, 435, 595 (1984).

Amer, S., Anales de Quimica, 71, 117 (1975).

Anderko, A., “Equation-of-State Methods for the Modelling of Phase Equilibria,” Fluid Phase Equilib., 61, 145-225 (1990).

Backhaus, A. A., “Continuous Process for the Manufacture of Esters,” U. S. Patent, 1, 400, 849 (1921).

Bender, J. P., A. Junges, E. Franceschi, F. C. Corazza, C. Dariva, J. V. Oliveira and M. L. Corazza, “High-Pressure Cloud Point Data for the System Glycol + Olive Oil + n-Butane + AOT,” Braz. J. Chem. Eng., 25, 563-570 (2008).

Bernatova, S., K. Aim and I. Wichterle, “Isothermal Vapor-Liquid Equilibrium with Chemical Reaction in the Quaternary Water + Methanol + Acetic acid + Methyl Acetate System, and in Five Binary Subsystems,” Fluid Phase Equilib., 247, 96-101 (2006).

Bomshtein et al., 1978 (Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 1, p 232).

Bondi, A., “Physical Properties of Molecular Crystals, Liquids and Glasses,” John Wiley and Sons, Inc.: New York, 1968.

Boublik, T., V. Fried and E. Hala, “The Vapour Pressures of Pure Substances,” 2nd ed.; Elsevier Science: New York, 1984.

Boukais-Belaribi, G., B. F. Belaribi, J. Lohmann and J. Jose, “Isothermal Vapour-Liquid Equilibria and Excess Molar Enthalpies of Hex-2-yne + Methyl Butyl Ether and Hex-3-yne + Dibutyl Ether Mixtures,” Fluid Phase Equilib., 262, 180-186 (2007).

Britt, H. I. and R. H. Luecke, “The Estimation of Parameters in Nonlinear, Implicit Models,” Technometrics, 15, 233-247 (1973).

Chapoy, A., S. Mokraoui, A. Valtz, D. Richon, A. H. Mohammadi and B. Tohidi, “Solubility Measurement and Modeling for the System Propane–Water from 277.62 to 368.16 K,” Fluid Phase Equilbria, 226, 213-220 (2004).

Cheng, J. C., “Isobaric Vapor-Liquid Equilibrium for Binary Mixtures Containing Water, Isopropyl Acetate, Propionic Acid or Methanol,” Master Thesis, National Taiwan University of Science and Technology, 2008.

Chiavone-Filho, O., P. Proust and P. Rasmussen, “Vapor-Liquid Equilibria for Glycol Ether + Water Systems,” J. Chem. Eng. Data, 38, 128-131 (1993).

Chiu, H. Y., “Vapor-Liquid Phase Equilibrium Properties of Mixtures Containing Supercritical Carbon Dioxide near Critical Region,” Ph. D. Thesis, National Taiwan University of Science and Technology, 2008.

Christov, M. and R. Dohrn, “High-Pressure Fluid Phase Equilibria Experimental Methods and Systems Investigated (1994-1999),” Fluid Phase Equilib., 202, 153-218 (2002).

Chung, T. H. and C. H. Twu, “A Simplified CEOS/AE Mixing Rule and Its Applications for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions," Fluid Phase Equilib., 191, 1-14 (2001).

Dahl, S. and M. L. Michelsen, “High-Pressure Vapor-Liquid Equilibrium with a UNIFAC-Based Equation of State,” AIChE J., 36, 1736-1829 (1990).

Daubert, T. E. and R. P. Danner, “Data Compilation Tables of Properties of Pure Compounds,” New York: AIChE, 1984.

Dias, L. M. B., E. J. M. Filipe, C. McCabe and J. C. G. Calado, “Thermodynamics of Liquid (Xenon + Methane) Mixtures,” J. Phys. Chem. B, 108, 7377-7381 (2004).

Doherty, M. F. and M. F. Malone, “Conceptual Design of Distillation Systems,” McGraw-Hill: New York (2001).

Dohrn, R. and G. Brunner, “High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (1988-1993),” Fluid Phase Equilib., 106, 213-282 (1995).

Fredenslund, Aa., R. L. Jones and J. M. Prausnitz, “Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures,” AIChE J., 21, 1086-1099 (1975).

Fuehner, H., 1924 (Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 1, p 177).

Galindo, A., A. Gil-Villegas, P. J. Whitehead, G. Jackson and A. N. Burgess, “Prediction of Phase Equilibria for Refrigerant Mixtures of Difluoromethane (HFC-32), 1,1,1,2-Tetrafluoroethane (HFC-134a), and Pentafluoroethane (HFC-125a) Using SAFT-VR,” J. Phys. Chem. B, 102, 7632-7639 (1998).

Gmehling, J., J. Li and M. Schiller, “A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties,” Ind. Eng. Chem. Res., 32, 178-193 (1993).

Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection-Aqueous-Organic Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1977; Vol. 1, pp 41, 58-59, 72.

Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection-Aqueous-Organic Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1977; Vol. 1, pp172-174.

Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection-Aqueous-Organic Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1977; Vol. 1, pp 321-324.

Gmehling, J., U. Onken and W. Arlt, “Vapor-Liquid Equilibrium Data Collection-Organic Hydroxy Compounds: Alcohols,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1982; Vol. 1, Part 2c, pp 81-86.

Haneda, A., T. Seki, D. Kodama and M. Kato, “High-Pressure Phase Equilibrium for Ethylene + Methanol at 278.15 K and 283.65 K,” J. Chem. Eng. Data, 51, 268-271 (2006).

Hayden, J. G. and J. P. O’Connell, “A Generalized Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Process Des. Dev., 14, 209-216 (1975).

Heidmann, R. A. and S. L. Kokal, “Combined Excess Free Energy Models and Equations of State,” Fluid Phase Equilib., 56, 17-37 (1990).

Holderbaum, T. and J. Gmehling, “PSRK: A Group Contribution Equation of State Based on UNIFAC,” Fluid Phase Equilib., 70, 251-265 (1991).

Hong, G. B., “Phase Equilibria for Separation of Aqueous Azeotropes with Heterogeneous Azeotropic Distillation,” Ph. D. Thesis, National Taiwan University of Science and Technology, 2003.

Hong, G. B., M. J. Lee and H. M. Lin, “Multiphase Coexistence for Mixtures Containing Water, 2-Propanol, and Ethyl Acetate,” Fluid Phase Equilib., 203, 227-245 (2002).

Hong, G. B., M. J. Lee, and H. M. Lin, “Multiphase Coexistence for Mixtures Containing Water, 2-propanol, and Isopropyl Acetate,” Ind. Eng. Chem. Res., 42, 937-944 (2003).

Horsley, L. H., “Azeotropic Data-III,” Adv. in Chem. Ser. 116; Am. Chem. Soc.: Washington DC, 1973.

Horstmann, S., K. Fischer and J. Gmehling, “Vapor-Liquid-Liquid Equilibria, Azeotropic, and Excess Enthalpy Data for the Binary System n-Undecane + Propionamide and Pure-Component Vapor Pressure and Density Data for Propionamide,” J. Chem. Eng. Data, 49, 1494-1498 (2004).

Hsieh, C. T., “Vapor-Liquid Equilibria for Mixtures Containing Acetate Acid, Propylene Glycol Monomethyl Ether, and Propylene Glycol Monomethyl Ether Acetate,” Master Thesis, National Taiwan University of Science and Technology, 2004.

Huron, M. J. and J. Vidal, “New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid Equilibria of Strongly Nonideal Mixtures,” Fluid Phase Equilib., 3, 255-271 (1979).

Iwai, Y., M. R. Margerum and B. C.-Y. Lu, “A New Three-Parameter Cubic Equation of State for Polar Fluid and Fluid Mixtures,” Fluid Phase Equilib., 42, 21-41 (1988).

Ji, W. Y., “Isobaric Vapor-Liquid Equilibrium for Binary Mixtures Containing Propionates,” Master Thesis, National Taiwan University of Science and Technology, 2006.

Joback, K. G. and R. C. Reid, “Estimation of Pure-Component Properties from Group-Contributions,” Chem. Eng. Commun., 57, 233-243 (1987).

Kendall and Harrison, 1928 (Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 1, p 177).

Kendall and Harrison, 1928 (Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 1, p 229).

Kontogeorgis, G. M., E. Voutsas, I. Yakoumis and D. P. Tassios, “An Equation of State for Associating Fluids,” Ind. Eng. Chem. Res., 35, 4310-4318 (1996).

Korea Thermophysical Properties Data Bank. Web site: http://www.cheric.org/kdb/

Kurihara, K., T. Minoura, K. Takeda and K. Kojima, “Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water,” J. Chem. Eng. Data, 40, 679-684 (1995).

Laroche, L., N. Bekiaris, H. W. Anderson and M. Morari, “The Curious Behavior of Homogeneous Azeotropic Distillation—Implications for Entrainer Selection,” AIChE J., 38, 1309-1328 (1992).

Larsen, B. L., P. Rasmussen and Aa. Fredenslud, “A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing,” Ind. Eng. Chem. Res., 26, 2274-2286 (1987).

Lee, M. J., L. H. Tsai, G. B. Hong and H. M. Lin, “Multiphase Coexistence for Aqueous Systems with Amyl Alcohol and Amyl Acetate,” Ind. Eng. Chem. Res., 41, 3247-3252 (2002).

Lee, M. J., L. H. Tsai, G. B. Hong, H. M. Lin, “Multiphase Equilibria for Binary and Ternary Mixtures Containing Propionic Acid, n-Butanol, Butyl Propionate, and Water,” Fluid Phase Equilib., 216, 219-228 (2004).

Lei, Z., W. Arlt and P. Wasserscheid, “Selection of Entrainers in the 1-Hexene/n-Hexane System with a Limited Solubility,” Fluid Phase Equilib., 260, 29-35 (2007).

Lin, H. M., G. B. Hong, C. E. Yeh and M. J. Lee, “Liquid-Liquid Equilibria for Ternary Mixtures of Water + Ethanol with 1-Hexanol, Butyl Propionate, or Ethyl Caproate,” J. Chem. Eng. Data, 48, 587-590 (2003).

Luyben, W. L., “Distillation Design and Control Using Aspen Simulation,” John Wiley and Sons, Inc.: New Jersey, 2006.

Magnussen, T., P. Rasmussen and Aa. Fredenslund, “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria,” Ind. Eng. Chem. Process Des. Dev., 20, 331-339 (1981).

Martin, M. C. and R. B. Mato, “Isobaric Vapor-Liquid Equilibrium for Methyl Acetate + Methanol + Water at 101.3 kPa,” J. Chem. Eng. Data, 40, 326-327 (1995).

Mathias, P. M, “A Versatile Phase Equilibrium Equation of State,” Ind. Eng. Chem. Process Des. Dev., 22, 385-391 (1983).

McHugh, M. and V. Krukonis, “Supercritical Fluid Extraction—Principles and Practice,” Butterworth: Boston, MA, 1986.

Michelsen, M. L., “A Modified Huron-Vidal Mixing Rule for Cubic Equations of State,” Fluid Phase Equilib., 60, 213-219 (1990).

Montanes, F., A. Olano, E. lbanez and T. Fornari, “Modeling Solubilities of Sugars in Alcohols Based on Original Experimental Data,” AIChE J., 53, 2411-2418 (2007).

Nagahama, K, “VLE Measurements at Elevated Pressures for Process Development,” Fluid Phase Equilib., 116, 361-372 (1996).

Negi, D. S., F. Sobotks, T. Kimmel, G. Wozny and R. Schomcker, “Liquid-Liquid Phase Equilibrium in Glycerol-Methanol-Methyl Oleate and Glycerol-Monoolein-Methyl Oleate Ternary Systems,” Ind. Eng. Chem. Res., 45, 3693-3696 (2006).

Othmer, D. F. and P. E. Tobias, “Tie Line Correlation,” Ind. Eng. Chem., 34, 693-696 (1942).

Patel, N. C. and A. S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., 37, 463-473 (1982).

Peng, D. Y. and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15, 59-64 (1976).

Pham, H. N. and M. F. Doherty, “Design and Synthesis of Heterogeneous Azeotropic Distillation—III. Column Sequence,” Chem. Eng. Sci., 45, 1845-1854 (1990).

Pitzer, K. S., D. Z. Lippmann, R. F. Curl, C. M. Huggins and D. E. Petersen, “The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization,” J. Am. Chem. Soc., 77, 3433-3440 (1955).

Polak, J. and B. C.-Y. Lu, “Vapor-Liquid Equilibria of Methyl Propanoate-Methanol and Methyl Propanoate-Ethanol Systems at 25 ℃,” J. Chem. Eng. Data, 17, 456-458 (1972).

Poling, B. E., J. M. Prausnitz and J. P. O’Connell, “The Properties of Gases and Liquids,” 5th ed.; McGraw-Hill: New York, 2001.

Popken, T., L. Gotze and J. Gmehling, “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis,” Ind. Eng. Chem. Res., 39, 2601-2611 (2000).

Prikhodko, I. V., T. M. Letcher and T. W. de Loos, “Liquid-Liquid Equilibrium Modeling of Ternary Hydrocarbon + Water + Alkanol Systems,” Ind. Eng. Chem. Res., 36, 4391-4396 (1997).

Redlich, O. and N. S. Kwong, “On the Thermodynamics of Solutions. V: An Equation of State. Fugacities of Gaseous Solutions,” Chem. Rev., 44, 233-244 (1949).

Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures,” AIChE J., 14, 135-144 (1968).

Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 27, 1197-1203 (1972).

Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Ternary and Quaternary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 3.

Sorensen, J. M., “LLE Calculations Using Activity Coefficient Models,” Ph. D. Thesis, The Technical University of Denmark, 1980.

Stephenson, R. and J. Stuart, “Mutual Binary Solubilities: Water-Alcohols and Water-Esters,” J. Chem. Eng. Data, 31, 56-70 (1986).

Stievano, M and N. Elvassore, “High-Pressure Density and Vapor-Liquid Equilibrium for the Binary Systems Carbon Dioxide-Ethanol, Carbon Dioxide-Acetone and Carbon Dioxide-Dichloromethane,” J. Supercrt. Fluids, 33, 7-14 (2005).

Swaminathan, S. and D. P. Visco, “Thermodynamic Modeling of Refrigerants Using the Statistical Associating Fluid Theory with Variable Range. 2. Applications to Binary Mixtures,” Ind. Eng. Chem. Res., 44, 4806-4814 (2005).

Tang, Y. T., Y. W. Chen, H. P. Huang, C. C. Yu, S. B. Hung and M. J. Lee, “Design of Reactive Distillation for Acetic Acid Esterification,” AIChE J., 51, 1683-1699 (2005).

Teo, W. K. and D. M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3- Molecular Sieves,” Ind. Eng. Chem. Process Des. Dev., 25, 17-21 (1986).

Tochigi, K., H. Takahara, Y. Shiga and Y. Kawase, “Isobaric Vapor-Liquid Equilibria for Water + Propylene Glycol Monomethyl Ether (PGME), Water + Propylene Glycol Monomethyl Ether Acetate (PGMEA), and PGME + PGMEA at Reduced Pressures,” Fluid Phase Equilib., 260, 65-69 (2007).

TRC Thermodynamic Tables, Non-Hydrocarbons: Thermodynamics Research Center, the Texas A & M University System: College Station, TX, 1993.

Twu, C. H., D. Bluck, J. R. Cunningham and J. E. Coon, “A Cubic Equation of State with a New Alpha Function and a New Mixing Rule,” Fluid Phase Equilib., 69, 33-50 (1991).

Twu, C. H. and J. E. Coon, “CEOS/AE Mixing Rules Constrained by the vdW Mixing Rule and the Second Virial Coefficient,” AIChE J., 42, 3212-3222 (1996).

Twu, C. H., J. E. Coon and D. Bluck, “Equations of State Using an Extended Twu-Coon Mixing Rule Incorporating UNIFAC for High Temperature and High Pressure Phase Equilibrium Predictions,” Fluid Phase Equilib., 139, 1-13 (1997).

Twu, C. H., J. E. Coon, D. Bluck and B. Tilton, “CEOS/AE Mixing Rules from Infinite Pressure to Zero Pressure and then to No Reference Pressure,” Fluid Phase Equilib., 158-160, 271-281 (1999).

Twu, C. H., J. E. Coon and J. R. Cunningham, “A New Generalized Alpha Function for a Cubic Equation of State Part 1. Peng-Robinson Equation,” Fluid Phase Equilib., 105, 49-59 (1995).

Vargaftik, N. B., “Tables on the Thermophysical Data for Pure Compounds,” John Wiley and Sons, Inc.: New York, 1975.

Venkataratnam et al., 1957 (Sorensen, J. M. and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1979; Vol. V, Part 1, p 177).

Walas, S. M., “Phase Equilibria in Chemical Engineering,” Butterworth: Boston, MA, 1985.

Wilson, A. and E. L. Simons, “Vapor-Liquid Equilibria,” Ind. Eng. Chem., 44, 2214-2219 (1952).

Wilson, G. M., “Calculation of Enthalpy Data from a Modified Redlich-Kwong Equation of State,” Adv. Cryog. Eng., 11, 392-400 (1966).

Wilson, G. M., “Vapor-Liquid Equilibria Correlated by Means of a Modified Redlich-Kwong Equation of State,” Adv. Cryog. Eng., 9, 168-176 (1964).

Winter, R., J. Erbes, R. H. Templer, J. M. Seddon, A. Syrykh, N. A. Warrender and G. Rapp, “Inverse Bicontinuous Cubic Phases in Fatty Acid/Phosphatidylcholine Mixtures: the Effects of Pressure and Lipid Composition,” Phys. Chem. Chem. Phys., 1, 887-893 (1999).

Wong, S. H. and S. I. Sandler, “A Theoretically Correct Mixing Rule for Cubic Equations of State,” AIChE J., 38, 671-680 (1992).

Wu, Y. Y., “Design and Control of Reactive Distillation for Parallel Reactions System-Methanol and Mixed Acids,” Master Thesis, National Taiwan University, 2007.

Zapata, R. B., A. L. Villa and C. M. de Correa, “Measurement of Activity Coefficients at Infinite Dilution for Acetonitrile, Water, Limonene, Limonene Epoxide and Their Binary Pairs,” Fluid Phase Equilib., 275, 45-51 (2009).

QR CODE