簡易檢索 / 詳目顯示

研究生: 陳少嵩
Shao-Sung Chen
論文名稱: 以離子液體作為造孔劑製備PVDF多孔膜於薄膜蒸餾之應用
Ionic liquids porogen for preparation of poly vinylidene fluoride (PVDF) membrane for membrane distillation
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 吳昌謀
Chang-Mou Wu
何佳樺
Chia-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 聚偏氟乙烯薄膜蒸餾相分離法離子液體造孔劑
外文關鍵詞: PVDF, Membrane distillation, phase inversion, Ionic liquid, porogen
相關次數: 點閱:310下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇研究主要為探討以非溶劑誘導相分離法(non-solvent-induced phase inversion, NIPS)製備聚偏氟乙烯(polyvinylidenefluoride, PVDF)多孔薄膜,並探討將其應用於薄膜蒸餾應用的可行性。所探討之項目可分為兩大項,其一為以不同碳鏈之咯烷酮類離子液體作為造孔劑對於薄膜結構的影響;第二項為探討以相分離法製備的薄膜對於薄膜蒸餾系統效能評估。
在相分離法的過程中,各個相的組成對於最終所得到的薄膜結構有很大的影響。本研究中添加的離子液體添加於鑄膜液相,以延遲相轉換的速率,進而得到不同的結構。與未添加離子液體的薄膜做比較,可以發現由於分層的時間延遲,使得薄膜的斷面及下表面由本來的指狀結構轉化成緻密的海綿狀微孔結構;而這樣的結構增強了薄膜表面的粗糙度和疏水性。此外,FTIR及XRD的分析,發現PVDF的結晶相受到改變,可以推測PVDF在極性環境下其分子鏈段的排列將會受到改變,而產生不同的結晶態。
而在薄膜蒸餾系統的評估中,可以發現添加了離子液體的薄膜其通量及導電度的穩定性皆比對照組優異。由於薄膜疏水性上升後,使得進料端的水不易吸附於薄膜表面,且海綿狀的膜孔結構有利於水蒸氣通過薄膜,使得透過液的鹽濃度與通量能夠維持穩定。在與商業膜比較時,可發現以1%NMP IL所製備的薄膜其效能與商業薄膜最接近,由此可見以相分離法製備的薄膜於薄膜蒸餾之應用具有相當的潛力及發展性。


In this study, poly(vinylidene fluoride) (PVDF) membranes were prepared through non-solvent induced phase separation (NITPS) technique for membrane distillation (MD) applications. Ionic liquids were used as porogen and added into casting solution composing of PVDF and N-methyl-2-pyrrolidone (NMP) to obtain porous PVDF membranes. The resulting membranes were characterized systematically including Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), and contact angle measurement. According to the results of FTIR-ATR and XRD, the crystalline phase of PVDF was predominated by β phase. Based on the SEM and AFM observations, the surface morphology of PVDF membranes became rougher due to the addition of ionic liquids. Furthermore, MD test revealed that PVDF prepared from NMP ionic liquid has the best efficiency on preventing leakage of salt. Thus, this study demonstrated that PVDF membranes prepared by adding ionic liquid can serve as a promising candidate for membrane distillation applications.

致謝 1 中文摘要 2 Abstract 3 目錄 4 圖目錄 6 表目錄 8 第一章 緒論 9 1.1 研究背景 9 1.2 研究目的 10 第二章 文獻回顧 11 2.1 分離原理 11 2.2 薄膜分離技術 12 2.3 薄膜蒸餾技術 16 2.4 薄膜製備 24 2.5 離子液體造孔劑 27 2.6 聚偏氟乙烯的特性 29 第三章 實驗原理 31 3.1 非溶劑誘導相分離 31 3.2 各種參數對於薄膜型態的影響[34] 36 3.3 薄膜結構 38 3.4 薄膜蒸餾理論 39 第四章 實驗流程 45 4.1 實驗流程 45 4.2 實驗藥品介紹 46 4.3 實驗設備介紹 46 4.4 實驗方法介紹 46 第五章 結果與討論 51 5.1 相分離法薄膜的外觀 51 5.2 聚偏氟乙烯薄膜之結晶相討論 51 5.3 聚偏氟乙烯薄膜之表面結構討論 56 5.4 聚偏氟乙烯薄膜之親疏水性 63 5.5 聚偏氟乙烯應用於直接接觸式薄膜蒸餾系統之效能評估 65 第六章 結論 71 參考文獻 73

[1] T. Graham, (1861). "Liquid diffusion applied to analysis." Journal of the Franklin Institute 72(4): 273-276.
[2] J. C. Maxwell, (1966). 1 - On the Dynamical Theory of Gases* A2 - BRUSH, S.G. Irreversible Processes, Pergamon: 23-87.
[3] K. W. Böddeker, (1995). "The early history of membrane science selected papers celebrating vol. 100 Commentary: Tracing membrane science." Journal of Membrane Science 100(1): 65-68.
[4] C. Nezelof, (2003). "Henri Dutrochet (1776–1847): an unheralded discoverer of the cell." Annals of Diagnostic Pathology 7(4): 264-272.
[5] J. H. Van't Hoff, (1995). "The early history of membrane science selected papers celebrating vol. 100The role of osmotic pressure in the analogy between solutions and gases." Journal of Membrane Science 100(1): 39-44.
[6] W. Stillwell, (2013). Chapter 14 - Membrane Transport. An Introduction to Biological Membranes. San Diego, Elsevier: 305-337.
[7] S. Atkinson, (1999). "The history of the industry." Filtration & Separation 36(1): 28.
[8] H. A. Daynes, (1920). "The Process of Diffusion through a Rubber Membrane." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 97(685): 286-307.
[9] A. F. Ismail, K. Khulbe, and T. Matsuura, (2015). Gas Separation Membranes: Polymeric and Inorganic, Springer International Publishing.: 6.
[10] A. F. Ismail, K. Khulbe, and T. Matsuura, (2015). Gas Separation Membranes: Polymeric and Inorganic, Springer International Publishing.: 7.
[11] S. Loeb, (1981). The Loeb-Sourirajan Membrane: How It Came About. Synthetic Membranes:, AMERICAN CHEMICAL SOCIETY. 153: 1-9.
[12] A. F. Turbak, (1981). Synthetic Membranes, American Chemical Society.:20-23.
[13] Yuri Yampolskii, (1993). Polymeric Gas Separation Membranes, Taylor & Francis.:356.
[14] M.G. Buonomenna, (2012). Advanced Materials for Membrane Preparation, Bentham.: 175.
[15] M.G. Buonomenna, (2012). Advanced Materials for Membrane Preparation, Bentham.: 175.
[16] K. W. Lawson, and D. R. Lloyd, (1997). "Membrane distillation." Journal of Membrane Science 124(1): 1-25.
[17] S. Vigneswaran, (2009). Waste Water Treatment Technologies - Volume III, EOLSS Publ.: 128.
[18] M. Khayet, and T. Matsuura, (2011). Membrane Distillation: Principles and Applications, Elsevier.: 5.
[19] Norman N. Li, Anthony G. Fane, W. S. Winston Ho, T. Matsuura, (2011). Advanced Membrane Technology and Applications, Wiley.: ch12.1.3.
[20] K. Smolders, and A. C. M. Franken, (1989). "Terminology for Membrane Distillation." Desalination 72(3): 249-262.
[21] M. Khayet, and T. Matsuura, (2011). Membrane Distillation: Principles and Applications, Elsevier.: 6.
[22] A. Alkhudhiri, N. Darwish and N. Hilal, (2012). "Membrane distillation: A comprehensive review." Desalination 287: 2-18. Baker, R. W. (2012). Membrane Technology and Applications, Wiley.: ch.3.3.1.
[23] A. Basile, and C. Charcosset, (2016). Integrated Membrane Systems and Processes, Wiley. : 358-359.
[24] N. V. Plechkova, and K. R. Seddon, (2008). "Applications of ionic liquids in the chemical industry." Chemical Society Reviews 37(1): 123-150.
[25] F. H. Hurley, and T. P. WIer, (1951). "The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature." Journal of The Electrochemical Society 98(5): 207-212.
[26] S. Ebnesajjad, (2013). Introduction to Fluoropolymers. Oxford, William Andrew Publishing: 63-89.
[27] S. Ebnesajjad, (2013). Introduction to Fluoropolymers. Oxford, William Andrew Publishing: 133-148.
[28] M. Benz, and W. B. Euler, (2003). "Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy." Journal of Applied Polymer Science 89(4): 1093-1100.
[29] A. Salimi, and A. A. Yousefi, (2003). "Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films." Polymer Testing 22(6): 699-704.
[30] P. Martins, A. C. Lopes and S. Lanceros-Mendez, (2014). "Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications." Progress in Polymer Science 39(4): 683-706.
[31] G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, (2011). "Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review." Industrial & Engineering Chemistry Research 50(7): 3798-3817.
[32] Van Den Boomgaard, T., R. M. Boom, and C. A. Smolders, (1990). "Diffusion and phase separation in polymer solution during asymmetric membrane formation." Makromolekulare Chemie. Macromolecular Symposia 39(1): 271-281
[33] M. Mulder, (1996). Basic Principles of Membrane Technology, Springer.:113-117.
[34] M. Mulder, (1996). Basic Principles of Membrane Technology, Springer.:118-119
[35] M. Mulder, (1996). Basic Principles of Membrane Technology, Springer.:120-130
[36] E. Y. Astakhov, S. F. Zhironkin, I. M. Kolganov, E. R. Klinshpont and P. G. Tsarin, (2011). "Study of the formation of the porous structure of membranes during phase separation of a poly(ester sulfone) solution." Polymer Science Series A 53(7): 613-620.
[37] E. Drioli, and M. Nakagaki, (2013). Membranes and Membrane Processes, Springer US.:132-134.
[38] J. G. Wijmans, S. Nakao, J. W. A. Van Den Berg, F. R. Troelstra and C. A. Smolders, (1985). "Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration." Journal of Membrane Science 22(1): 117-135.
[39] L. Martı́nez-Dı́ez, and M. I. Vázquez-González, (1999). "Temperature and concentration polarization in membrane distillation of aqueous salt solutions." Journal of Membrane Science 156(2): 265-273.
[40] R. W. Schofield, A. G. Fane, and C. J. D. Fell, (1987). "Heat and mass transfer in membrane distillation." Journal of Membrane Science 33(3): 299-313.
[41] S. Bandini, C. Gostoli, and G. C. Sarti, (1991). "Proceedings of the Twelfth International Symposium on Desalination and Water Re-use Role of heat and mass transfer in membrane distillation process." Desalination 81(1): 91-106.
[42] J. I. Mengual, M. Khayet, and M. P. Godino, (2004). "Heat and mass transfer in vacuum membrane distillation." International Journal of Heat and Mass Transfer 47(4): 865-875.
[43] M. Qtaishat, T. Matsuura, B. Kruczek, and M. Khayet (2008). "Heat and mass transfer analysis in direct contact membrane distillation." Desalination 219(1): 272-292.
[44] A. Salimi, and A. A. Yousefi, (2003). "Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films." Polymer Testing 22(6): 699-704.
[45] Z. Zhao, W. Zheng, W. Yu, and B. Long, (2009). "Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure." Carbon 47(8): 2118-2120.
[46] X. Zhang, J. Feng, X. Liu, and J. Zhu, (2012). "Preparation and characterization of regenerated cellulose/poly(vinylidene fluoride) (PVDF) blend films." Carbohydrate Polymers 89(1): 67-71.

無法下載圖示 全文公開日期 2021/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE