簡易檢索 / 詳目顯示

研究生: 黃建豪
Chien-Hao Huang
論文名稱: 以電紡技術製備用於燃料電池觸媒層之白金奈米纖維
The Preparation of Pt-Catalyst Layer for Fuel Cells by Using the Electrospinning
指導教授: 何明樺
Ming-Hua Ho
口試委員: 張敏興
Min-Hsing Chang
白孟宜
Meng-Yi Bai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 132
中文關鍵詞: 電紡PVP白金纖維交聯程序
外文關鍵詞: electrospinning, PVP, Pt fibers, cross-linking process
相關次數: 點閱:540下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用靜電紡絲法製備高分子PVP與白金前驅物所合成之複合奈米纖維,再以高溫移除高分子與還原白金前驅物形成具有高電導度與高比表面積之白金金屬奈米纖維,探討燒結後的金屬纖維之型態、元素組成、電化學性質與電性等最佳化研究,並且使用各種方法如降低燒結速率、中間層塗布、碳基材表面改質與交聯程序等進行煅燒程序後白金纖維薄膜均勻化之探討,期待作為質子交換膜燃料電池中陽極觸媒層的應用。
首先進行白金奈米纖維最佳化之製備,包含材料參數如高分子PVP濃度、溶劑之間的比例與白金前驅物濃度和電紡操作參數如電壓大小、流率大小以及雙極間距等最佳化程序。再煅燒後,以FESEM分析纖維型態及尺寸,可得尺寸40nm大小之奈米纖維,大幅提高比表面積。使用四點碳針儀進行電導度測試,可達3×104 S/cm之高電導度值,提高電子在電觸媒層上傳輸的速率。
在薄膜均勻化部份,將高分子白金纖維沉積在碳紙擴散層後,使用Glutaraldehyde(GA)作為交聯劑交聯高分子鏈形成網狀結構,在燒結過成中能抑制纖維的收縮達到薄膜均勻貼附的效果,增加電池大小的可能性,實現以金屬纖維作為質子交換膜燃料電池電觸媒層之
發展性。


The electrospun Pt nanofibers are prepared by the electrospinning of PVP-Pt solution, and then the PVP is removed by calcination in the air. The PVP concentration, solvent composition, Pt concentration, flow rate, applied voltage and discharging distance in the electrospinning are all optimized in this study. After that, the calcinations temperature and period are also investigated. To analyze the structure and properties of metallic nanofibers, SEM, TEM and EDS were applied to obtain the morphologyof nanofibers and the distribution of Pt in fibers. The Pt-fibrous layer are homogenized by several methods, including decrease of heating rate,coating of middle layer,surface modification for carbon support and cross-linking process.
The results indicated that the Pt nanofibers fabricated in this research are highly alloyed. With the optimized conditions in the electrospinning process, the diameters of nanofibers were smaller than 40 nm and with homogeneous distribution of Pt. The results also show a higher electrical conductivity of Pt nanofibers, compared with those of the conventional Pt nanoparticle catalysts. By using the pre-crosslinking with GA vapor and the post-crosslinking with concentrated GA solution, the shrinkage caused by calcinatiion can be avoided. Thus, a homogeneous catalyst layer composed of Pt electrospun fibers is successfully prepared in this study. The adhesion between carbon paper and Pt-fibrous catalyst layer is good in a large area. The enhancements of electrocatalytic properties for the Pt nanofibers could outperform on the electro-oxidations over the fuel cell electrodes.

中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 序論…...…...…...……………………………………… ……..1 第二章 文獻回顧 2.1 質子交換膜燃料電池 4 2.1.1 發展史 4 2.1.2 工作原理與電池結構 5 2.1.3 薄膜電極組 8 2.1.3.1 高分子薄膜 8 2.1.3.2 電極 10 2.1.3.2-1 三相界面 11 2.1.3.2-2 氣體擴散層 14 2.1.3.2-3 電催化層 15 2.1.4 流場版 16 2.1.5 電催化層 16 2.1.5.1 陽極電催化層 16 2.1.5.2 陰極電催化層 17 2.1.5.3 載體 17 2.1.5.3-1 碳粉 18 2.1.5.3-2 石墨纖維 18 2.1.5.3-3 奈米碳管 29 2.1.5.3-4 多孔碳 20 2.1.5.3-5 奈米突 21 2.1.5.3-6 奈米纖維 22 2.1.5.3-7 導電高分子 25 2.1.5.4 白金觸媒沉積到碳載體上的製備 25 2.2 載體金屬奈米纖維(Supported metal Nanofibers) 25 2.3 以靜電紡絲技術製備奈米金屬線 27 2.3.1 靜電紡絲(electrostatic spinning) 28 2.3.2 影響靜電紡絲的因素 30 2.3.3 不穩定性 31 2.3.4以靜電紡絲製備無機奈米纖維材料及在燃料電池的應用 35 第三章 實驗 3.1 實驗材料與藥品 42 3.2 實驗設備 44 3.2.1 靜電紡絲系統 44 3.2.2 箱型程控高溫爐 44 3.2.3 精密式電磁加熱攪拌器 44 3.3 分析儀器 45 3.3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 45 3.3.2 X光能譜散佈分析儀(Energy Dispersive Spectrometer, EDS) 45 3.3.3穿透式電子顯微鏡(Transmission Electron Microscope,TEM)46 3.3.4 四點探針薄膜測量儀(Four Point Probe) 47 3.3.5 電化學分析法-循環伏安法(cyclic voltametry) 47 3.3.6 熱重分析儀(Thermogravimetry Analyzer, TGA) 52 3.4 實驗方法 52 3.4.1 高分子與白金前驅物混合溶液配製 52 3.4.2 電紡程序 52 3.4.3 預交聯程序 53 3.4.4 後交聯程序 53 3.4.5 煅燒處理 54 3.4.6 碳基材表面改質 54 3.5 試片分析 54 3.5.1 SEM表面影像分析 54 3.5.2 EDS元素分析 55 3.5.3 TGA熱重分析 55 3.5.4 TEM結構分析 56 3.5.5 循環伏安法燃料測試 56 3.6 實驗流程圖 57 第四章 實驗結果與討論 4.1 以靜電紡絲製備高分子PVP白金纖維(PVP-Pt fibers) 59 4.1.1 高分子濃度對高分子白金纖維型態的影響 59 4.1.2 溶劑比例對於高分子白金纖維型態的影響 63 4.1.3 白金前驅物的濃度對高分子白金纖維型態的影響 66 4.1.4 靜電紡絲機之輸出電壓對高分子白金纖維的影響 69 4.1.5 流率對高分子白金纖維的影響 71 4.1.6 靜電紡絲機之雙極間距對高分子白金纖維的影響 73 4.2 以煅燒程序移除高分子製備白金纖維(Pt fibers) 76 4.3 電觸媒層白金纖維薄膜之均勻化探討 86 4.3.1 降低到達高分子移除溫度的升溫速率 88 4.3.2 使用中間層(sublayer)作為黏著層 90 4.3.3 使用電漿處理(plasma treatment)進行碳基材表面改質 93 4.3.3.1 以O2電漿進行碳紙表面親水處理 94 4.3.3.2 以Ar電漿進行碳基材表面粗糙度改質之蝕刻處理 96 4.3.4 使用交聯程序抑制纖維薄膜收縮問題 102 4.3.4.1 前交聯處理 103 4.3.4.2 後交聯處理(Post Crosslinking) 109 4.3.4.3 預交聯處理(Pre- Crosslinking) 113 4.4 白金纖維薄膜電極之電化學活性分析 119 第五章 結論 121 參考文獻 122

1. K. B. Prater. Polymer Electrolyte Fuel Cells: A Review of RecentDevelopments.J. Power Source. (1994) 51: 129.

2. K. A. Starz, E. Auer, T. Lehmann, and R. Zuber. Characteristics ofPlatinum-Based Electro Catalysts for Mobile PEMFC Applications. J. Power Source, 84, 167(1999).

3. C. Lamy, A. Lima, V. LeRhum, F. Delime, and C. Coutanceau. Recentadvances in the development of direct alcohol fuel cells (DAFC). J.Power Source, 105, 283 (2002).

4. N, Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu.Performance of polymer electrolyte membrane fuel cells with carbonnanotubes as oxygen reduction catalyst support material. J. PowerSource, 140, 250 (2005).

5. P. Costamagna and S. Srinivasan. Fundamental scientific aspects.Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 PART I. Fundamental scientific aspects. J PowerSources 102 (2001), pp. 242–252.

6. Q. Chen,K. Schmidt-Rohr. 19F and13C NMR Signal Assignment andAnalysis in a Perfluorinated Ionomer (Nafion) by Two-dimensionalSolid-State NMR. Macromolecules., 37, 5995(2004).

7. P. N. Huang. Superoxygen ion conductivity of lanthanum gallatedoped with strontium and magnesium. A. Petric,J. Electrochem. Soc.1996, 143(5): 1644∼1648.

8. K. Yamaji, T. Horita, M. Ishikawa et al. Compatibility ofLa0.9Sr0.1Ga0.8Mg0.2O2.85as the electrolyte for SOFCs. Solid StateIonics, 1998, 108(1∼4): 415∼421.
9. http://www.permapure.com/Nafionchem.JPG

10. http://www.permapure.com/Nafionchem.JPG

11. Z. Poltarzew, P. Staiti, A. Aldercucci. Soc. Nafion Distribution in GasDiffusion Electrodes for Solid Polymer Electrolyte Fuel CellApplications. J. Electrochem 139, 761. (1992).

12. P. Staiti, Z. Poltarzewski, A. Aldercucci, Solid polymer electrolyte fuel cell (SPEFC) research and development at the institute CNR-TAE ofmessina. International Journal of Hydrogen Energy, 19, 523 (1994).

13. S. Litster, G. McLean, PEM fuel cell electrodes. J. Power Source, 130,61 (2004).

14. T. R. Ralph, G. A. Hards, and J. E. Keating, (1997). Low CostElectrodes for Proton Exchange Membrane Fuel Cells. J. Electrochem.Soc., 144(11), 3845-3857.

15. L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua. Influence of thePTFE content in the diffusion layer of low-Pt loading electrodes forpolymer electrolyte fuel cells. (1998). Electrochimica Acta, 43, 24,3675-3680.

16. M. S. Wilson and S. Gottesfield,(1992). Thin-film catalyst layers ofpolymer electrolyte fuel cell electrodes. J. Electrochem. Soc., 139(2),L28-30.

17. S. Gottesfeld. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. (1995).Electrochimica Acta, 40(3), 355-363.

18. Q. Zhigang and A. Kaufman. Low Pt loading high performance cathodes for PEM fuel cells (2003). Journal of Power Source,
113,37-43.
19. Q. Zhigang and A. Kaufman, Enhancement of PEM fuel cellperformance by steaming or boiling the electrode. (2002), Journal ofPower Source, 109, 227-229.

20. Q. Zhigang and A. Kaufman, Activation of low temperature PEM fuelcells. (2002), Journal of Power Source, 111, 181-184.

21. S. Hirano, K. Junbom and S. Supramaniam. High performance protonexchange membrane fuel cells with sputter-deposited Pt layerelectrodes. Electrochimica Acta, 1997, 42: 1587.

22. A. M. Zainoodin, S. K. Kamarudin and W. R. W. Daud. Electrode indirect methanol fuel cells. International Journal of Hydrogen 35 (2010) 4606∼4621.

23. G. Hoogers, “Fuel Cell Technology Handbook”, CRC Press, BocaRaton, London, New York, Washington, D. C. (2003).

24. C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. Terry K. Baker,Graphite Nanofibers As An Electrode For Fuel Cell Applications. J. Phys. Chem. B, 105, 1115 (2001).

25. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, APt-Ru/Graphitic carbon nanofiber nanocomposite exhibiting highrelative performance as a Direct-Methanol fuel cell anode catalyst. J.Phys. Chem. B, 105, 8097 (2001).

26. V. Lordi, N. Yao and J. Wei, Method for supporting platinum onsingle-walled carbon nanotubes for a selective hydrogenation catalyst.Chem. Mater., 13, 733 (2001).

27. B. C. Satishkumar, E. M. Vogl, A. Govindaraj and C. N. R. Rao. Thedecoration of carbon nanotubes by metal nanoparticles. J. Phys. D:Appl. Phys., 29, 3173 (1996).

28. Z. Qi, M. C. Lefebvre and P. G. Pickup. Electron and proton transportin gas diffusion electrodes containing electronically conductiveproton-exchange polymer. J. Electroanal. Chem. , 459, 9 (1998).

29. T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura,, T. Ichihashi, Y.Kubo, D. Kasuya and K. Takahashi, Physica B, 323(2002), 124.

30. N. M. Rodriguez, M. S. Kim and R. T. K. Baker. Carbon nanofibers: Aunique catalyst support medium. J. Catal. , 144, 93 (1993).

31. N. Krishnankutty, C. Park, N. M. Rodriguez, and R. T. K. The effect ofcopper on the structural characteristics of carbon filaments producedfrom iron catalyzed decomposition of ethylene. Baker. Catal. Today. 37, 295 (1997).

32. S. Iijima, Helical microtubules of graphitic carbon. Nature,vol. 354,pp.56-58 (1991).

33. T. W. Ebbesen and P. M. Large scale synthesis of carbon nanotubes.Ajayan, Nature, 358, 220 (1992).

34. G. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher. MetalNanocluster-filled Carbon Nanotubes: Catalytic Properties andPossible Applications in Electrochemical Energy Storage andProduction. Langmuir, 15, 750 (1999).

35. J. Z. Luo, L. Z. Gao, Y. L. Leung and C. T. Au. Surface study onCu/Zn/Mn/Al methanol synthesis catalysts. Catal. Lett. 66, 91 (2000).

36. R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G.Q. Xu and T. S. Andy Hor. Platinum deposition on carbon nanotubesvia chemical modification. Chem. Mater. 10, 718 (1998).

37. Y. Xing, J. Phys. Synthesis and Electrochemical Characterization ofUniformly-Dispersed High Loading Pt Nanoparticles onSonochemically-Treated Carbon Nanotubes. Chem. B, 108, 19255(2004).

38. A. Freund, J. Lang, T. Lehmann and K. A. Starz, Improved Pt alloy catalysts for fuel cells. Catal. Today, 27, 279(1996).

39. K. Y. Chan, J. Ding, J Ren, S. Cheng and K. Y. Tsang. SupportedMixed Metal Nanoparticles for Fuel Cell Electrode. J. Mater. Chem,14, 505 (2004).

40. A. Esmaeilifar, S. Rowshanzamir, M. H. Eikani and E. Ghazanfari.Synthesis methods of low-Pt-loading electrocatalysts for protonexchange membrane fuel cell systems. Energy, 35 (2010), 3941-3957.

41. J. H. Park, Y. W. Ju, S. H. Park, H. R. Jung, K. S. Yang and W. J. Lee.Effects of electrospun polyacrylonitrile-based carbon nanofibers ascatalyst support in PEMFC. J Appl Electrochem (2009) 39,1229-1236.

42. M. Li, G. Han and B. Yang. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochemistry Communications 10(2008) 880~883.

43. Z. Lin, L. Ji and X. Zhang. Electrocatalytic Properties of Pt/CarbonComposite Nanofibers. Electrochimica Acta. 54 (2009) 7042-4047.

44. H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi and W. B. Kim. Pt andPtRh nanowire electrocatalysts for cyclohexane-fueled polymerelectrolyte membrane fuel cell. Electrochemistry Communications. 11(2009) 446~449.

45. H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi and J. Cho. Highlyimproved oxygen reduction performance over Pt/C-dispersednanowire network systems. Electrochemistry Communications. 12(2010) 32~35.

46. E. Formo, M. S. Yavuz, E. P. Lee, L. Lane and Y. Xia.Functionalization of Electrospun Ceramic Nanofibre Membranes with Noble-Metal Nanostructures for Catalytic Application. Journalof
Materials Chemistry. 19 (2009) 3878-3882.

47. Y. S. Kim, S. H. Nam, H. S. Shim, H. J. Ahn, M. Anand and W. B.Kim. Electrospun bimetallic nanowires of PtRh and PtRu withcompositional variation for methanol electrooxidation.Electrochemistry Communications. 10 (2008) 1016-1019.

48. J. M. Kim, H. I. Joh, S. M. Jo, D. J. Ahn, H. Y. Ha, S. A. Hong and S.K. Kim. Preparation and characterization of Pt nanowire byelectrospinning method for methanol oxidation. Electrochemistry Acta. 55 (2010) 4827~4835.

49. Z. Lin, L. Ji and X. Zhang. Electrodeposition of platinumnanoparticles onto carbon nanofibers for electrocatalytic oxidation ofmethanol. Materials Letters. 63 (2009) 2115~2118.

50. K. Amine, M. Mizuhata and K. Oguro. Catalytic activity of platinumafter exchange with surface active functional groups of carbon blacks.J. Chem Soc Faraday Trans. 91 (1995) 4451.

51. J. Li, X. Liang, D. M. King, T. B. Jiang and A. W. Weimer. HighlyDispersed Pt Nanoparticle Catalyst Prepared by Atomic LayerDeposition. Applied Catalysis B: Environmental. 97 (2010) 220-226.

52. M. D. Gasda, R. Teki, T. –M. Lu, N. Koratkar, G. A. Eisman and D.Gall. Journal of The Electrochemical Society. 156 (2009) 5,B614~B619.

53. S. M. Choi,J. H. Kim, J. Y. Jung, E. Y. Yoon and W. B. Kim. Ptnanowires prepared via a ploymer template method: its promisetoward high Pt-loaded electrocatalysts for methanol oxidation.Electrochim. Acta. 53 (2008) 5804.

54. Y. S. Kim, S. H. Nam, H. –S. Shim, H. –J. Ahn , M. Anand and W. B.Kim. Electrospun bimetallic nanowires of PtRh and PtRu withcompositional variation for methanol electrooxidation. Electrochem.Commun. 10 (2008) 1016.

55. Z. Chen, M. Waje, W. Li, Y. Yan and Angew. Supportless Pt and PtPdnanotubes as electrocatalysts for oxygen-reduction reactions. Chem.Int. Ed. 46 (2007) 4060.

56. Y. Song, R. M. Garcia, R. M Dorin, H. Wang, Y. Qiu, E. N. Coker, W.A. Steen, J. E. Miller and J. A. Shelnutt. Synthesis of PlatinumNanowire Networks Using a Soft Template. Nano Lett. 7 (2007) 3650.

57. S. Sun, F. Jaouen and J. –P. Dodelet. Ultralong Pt-on-Pd bimetallicnanowires with nanoporous surface: nanodendritic structure forenhanced electrocatalytic activity. Adv. Mater. 20 (2008) 3900.

58. R. Inguanta, S. Piazza and C. Sunseri. Synthesis of self-standing Pdnanowires via galvanic displacement deposition. Electrochem.Commun. 11 (2009) 1385.

59. G. Y. Zhao, C. L. Xu, D. J. Guo. H. Li and H. L. Li. Templatepreparation of Pt–Ru and Pt nanowire array electrodes on a Ti/Sisubstrate for methanol electro-oxidation. Journal of power source. 162(2006) 492-496.

60. A. Formhals. US Patent. 1975, 504, 1934.

61. D. H. Reneker and I. Chun. Nanometre diameter fibers of polymer,produced by electrospinning. Nanotechnology. (1996) 7: 216~223.

62. D. Li and Y. Xia. Electrospinning. Adv. Mater. 14 (2004) 16.

63. S.V. Kuchibhattla, A.S. Karakoti, D. Bera, S. Seal, Prog. Electrospunbimetallic nanowires of PtRh and PtRu with compositional variationfor methanol electrooxidation. Mater. Sci. 52 (2007) 699.

64. M.H. Seo, S.M. Choi, H.J. Kim, J.H. Kim, B.K. Cho, W.B. Kim, J.Power Source 179 (2007) 81.

65. Fernandez de la Mora, J. 2007 The fluid dynamics of Taylor Cones.Annu. Rev. Fluid Mech. 39:217-243.

66. Mestel, A. J. 1994 Electrohydrodynamic stability of a slightly viscousjet. J. Fluid Mech. 274: 93-113.

67. J. E. Mark. Polymer handbook. 1998.

68. T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashiand Y. Kudo. Preparation of fine platinum catalyst supported onsingle-wall carbon nanohorns for fuel cell application. Physica B.2002. 323. 124-6.

69. H. Lee, S. H., Choi,S. M. Jo,D. Y. Kim,S. Kwak, M. W. Cha, I. D.Kim and S. Y. Jang. J. Phys. D: Appl. Phys.42 (2009) 125409 (6pp).

70. Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu and C. Wang. Influence ofsolvent on the Formation of Ultrathin Uniform Poly(vinyl pyrrolidone)Nanofibers with Electrospinning. Wiley InterScience. 10. 1002. 20222
71. D. H. Reneker and A. L. Yarin. Electrospinning jets and polymernanofibers. Polymer 49 (2008) 2387-2425.

72. J. Bai, Y. Li, S. Wang, C. Zhang and Q. Yang. Electrospinning methodfor the preparation of silver chloride nanoparticles in PVP nanofiber .Applied Surface Science. 254 (2008) 4520-4523.

73. S. Chuangchote, T. Sagawa and S. Yoshikawa. Electrospinning ofpoly(vinyl pyrrolidone): Effects of solvents on electrospinnability forthe fabrication of poly(p-phenylene vinylene) and TiO2 nanofibers.Wiley InterScience. (2009) 611-0011.

74. X. Xu, Q. Wang, H. C. Choi and Y. H. Kim. Encapsulation of ironnanoparticles with PVP nanofibrous membranes to maintain theircatalytic activit. Journal of membrane Science. 348 (2010) 231-237.

75. W. Shi, W. Lu and L. Jiang. The fabrication of photosensitiveself-assembly Au nanoparticles embedded in silica nanofibers byelectrospinning. Journal of Colloid and Interface Science. 340 (2009)291-297.

76. Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu and C. Shao. ZnO HollowNanofibers: Fabrication from Facile Single Capillary Electrospinning and Applications in Gas Sensors. Phys. Chem.C. 113 (2009) 19397-19403.

77. Z. Lin, M. D. Woodroof, L. Ji, Y. Liang, W. Krause and X. Zhang.Effect of platinum salt concentration on the electrospinning ofpolyacrylonitrile/platinum acetylacetonate solution. WileyInterScience. (2009).

78. H. Fong, I Chun and D. H. Reneker. Beaded nanofibers formed duringelectrospinning. Polymer. 40. (1999). 4585.

79. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao and B. Chu. Structureand process relationship of electrospun bioabsorbable nanofibermembranes. Polymer. 43 (2002) 4403.

80. J. M. Deitzel, J. D. Kleinmeyer, D. Harris and N. C. Beck Tan.Controlled Deposition of Electrospun Poly(ethylene oxide) Fibers.Polymer . 42 (2001) 261.

81. .Koski, K. Yim and Shivkumar. Effect of molecular weight on fibrousPVA produced by electrospinning. Mater. Lett. 58 (2004) 493.

82. Y. S. Kim, S. H. Nam, H. S. Shim, H. J. Ahn, M. Anand amd W. B.Kim. Electrospun bimetallic nanowires of PtRh and PtRu withcompositional variation for methanol electrooxidation.Electrochemistry Communications. 10 (2008) 1016-1019.

83. H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi and W. B. Kim. Effect of Rh content on carbon-supported PtRh catalysts for dehydrogenativeelectrooxidation of cyclohexane to benzene over polymer electrolytemembrane fuel cell. Electrochemistry Communications. 11 (2009)446-449.

84. N. Bhardwaj and S. C. Kundu. Electrospinning: A fascinating fiberfabrication technique. Biotechnology Afvances. 28 (2010) 325-347.

85. J. Shui and J. C. M. Li. Platinum Nanowires Produced byElectrospinning. NANO LETTERS. 9 (2009) 1307-1314.

86. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran and S. S.Ramkumar. Electrospinning of nanofibers. Wiley InterScience. 10(2004) 21481.

87. H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, J. Cho, G. W. Huber and W. B. Kim. Electrochemistry Communications. 12 (2010) 32-35.

88. A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini and L. Giorgi.Comparison of high surface Pt/C catalysts by cyclic voltammetry. J.Power Source. Vol. 105, pp. 13-19. 2002.

89. S. J. Kim, C. K. Lee and S. I. Kim. Effect of Ionic Salys on theProcessing of Poly(2-acrylamido-2-methyl-1-propane sulfonic acid)Nanofibers. Wiley InterScience. 10. 1002. 21567.

90. W. E. Teo, R. Inai and S. Ramakrishna. Technological advances inelectrospinning of nanofibers. Sci. Technol. Adv. Mater. 12 (2011)013002 (19pp)

91. J. H. He, Y. Q. Wan and J. Y. Yu. Effect of Concentration onelectrospun Polyacrylonitrile (PAN) Nanofibers. Fibers and Polymers. 2008, Vol. 9, No. 2, 140-142.

92. A. M. Afifi, H. Yamane and Y. Kimura. Effect of Polymer MolecularWeight on the Electrospinning of Polyactides in Entangled andAligned Fibers Forms. Sen’I Gakkaishi. Vol. 66, No. 2 (2010).

93. J. H. Lee, K. S. Hwang and T. S. Kim. Effect of Oxygen PlasmaTreatment on Adhesion Improvement of Au Deposited on Pa-cSubstrates. Journal of the Korean Physical Society, Vol. 44, No. 5, May 2004, pp. 1177-1181.

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE