簡易檢索 / 詳目顯示

研究生: 陳柏延
Bo-yan Chen
論文名稱: 耦合器於矽線波導光環型共振腔之研究與應用
A Study of the Optical Coupler in Silicon Wire Waveguide based Optical Ring Resonator
指導教授: 徐世祥
Shih-hsiang Hsu
口試委員: 劉政光
Cheng-kuang Liu
張勝良
Sheng-lyang Jang
譚昌文
Chen-wen Tarn
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 耦合器環型共振腔矽線波導
外文關鍵詞: Silicon Wire Waveguide, Coupler, Ring Resonator
相關次數: 點閱:329下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從光電積體電路被廣泛應用之後,就有許多波導材料被提出來,其中又以絕緣層上覆矽(Silicon on Insulator, SOI)最常被使用,因為此種材料有著低成本、高效率、高品質等特性,且絕緣層上覆矽又與互補式金屬氧化物半導體製程相容,在追求體積變小的趨勢下,絕緣層上覆矽因為具有高折射率差,使得元件線寬可以從微米等級縮小至次微米等級,因此用次微米矽線波導所設計的光環型共振腔(Optical Ring Resonator),被廣泛的運用在光電積體電路中。
    在光環型共振腔裡,分光功率器是一個不可或缺的元件,分光功率器不只可以運用在光環型共振腔上,更可以運用於差動相位偏移調變(Differential Phase Shift Keying, DPSK)、光解調變器(Demodulator)、三工器(Triplexer)等地方,最常見的分光功率器有方向耦合器(Directional Coupler, DC)和多模干涉器(Multimode Interference, MMI)。由於方向耦合器的間距(Gap)受到製程上尺寸的限制,所以多模干涉器是最常被運用在光環型共振腔中的分光功率器,多模干涉器對於分光率有著對波長與極化不敏感的特性,但是因為設計方式的關係,多模干涉器通常只有特定的分光率,且多模干涉器的分光率和品質因數在光環型共振腔中是否可以用轉移矩陣(Transfer matrix)的公式來取得正確的關聯,尚存在爭議性,所以本論文提出以馬克詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC)取代光環型共振腔中的多模干涉器,它是藉由在方向耦合器中間加上一段延遲長度所組成,具有對波長不敏感且任意分光率的特性,運用其任意分光率的優點,來設計光環型共振腔中的品質因數(Quality Factor, Q factor)。
    我們在矽線波導上製作出運用馬克詹德方向耦合器的光環型共振腔,我們製作的波導損耗為 ,但是卻有著14090、23871、19388的品質因數,假設未來的波導損耗可以更低的話,我們的品質因數將可以更高,並且可以應用於生醫感測上。


    In recent decades, a lot of waveguide materials are proposed to demonstrate the applications for optoelectronic integrated circuits (OEIC). Among them the silicon-on-insulator (SOI) is most commonly used due to its low cost and high compatibility with the complementary metal oxide semiconductor (CMOS) standard process. Moreover, SOI owns a high refractive index difference between the core and cladding layers for a compact size. Then a submicron silicon wire waveguide based optical ring resonator is widely studied and utilized in current OEIC systems.
    In addition to the multiple functions of differential phase shift keying (DPSK) optical demodulation and triplexer, the power splitter is an essential element in the optical ring resonator. The most common power splitters are directional coupler (DC) and multimode interferometer (MMI). Due to the processing critical dimension limitation for DC gap distance, MMI is the most popular power splitter in the optical ring resonator. The MMI splitting ratio is insensitive to the wavelength and polarization. However, the relationship between the MMI splitting ratio and quality factor of the optical ring resonator cannot be correlated in theoretical derivation using the transfer matrix function. In this thesis, a Mach-Zehnder directional coupler (MZDC), composed by adding the phase delay length between two DCs, will be presented and demonstrated for wide wavelength operation. MZDC can achieve any splitting ratio, as well as the wavelength-insensitive characteristics.
    An optical ring resonator was successfully fabricated and demonstrated with the quality factors of 14090, 23871 and 19388 using silicon wire waveguide based MZDC power splitters. The silicon wire waveguide propagation loss was 33 dB/cm, which can be further improved for even higher quality factors for biosensor applications.

    摘要 I Abstract II 致謝 III 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 1 1.3 論文架構 2 第二章 次微米矽線波導介紹 3 2.1 波導結構 3 2.2 單多模條件 4 2.3 傳播損耗 6 2.4 雙折射效應 13 2.5 有限時域差分法 15 第三章 馬克詹德方向耦合器 17 3.1 方向耦合器 17 3.2 超模(Supermodes) 26 3.3 馬克詹德干涉儀 28 3.4 馬克詹德方向耦合器理論 31 3.5 馬克詹德方向耦合器設計 34 第四章 環型共振腔 38 4.1 法布里-伯羅標準具(Fabry-Perot Etalon) 38 4.2 環型共振腔理論 41 4.3 環型共振腔設計 48 第五章 量測結果與結論 52 5.1 量測結果 52 5.2 結論 63 5.3 未來展望 63 參考文獻 64

    [1] Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 (1991).
    [2] Seong Phun Chan, Ching Eng Png, Soon Thor Lim, Graham T. Reed, and Vittorio M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111 (2005).
    [3] Timo. Aalto, “Microphotonic silicon waveguide components,” Espoo 2004, VTT Publications 553.
    [4] Pieter Dumon, Wim Bogaerts, Vincent Wiaux, Johan Wouters, Stephan Beckx, Joris Van Campenhout, Dirk Taillaert, Bert Luyssaert, Peter Bienstman, Dries Van Thourhout, Roel Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1328-1330 (2004).
    [5] Kah-Wee Ang, Guo-Qiang Lo Patrick, “Avalanche photodiodes: Si charge avalanche enhances APD sensitivity beyond 100 GHz,” Laser Focus World, Vol. 46, No. 8, p. 41 (2010).
    [6] Kevin K. Lee, Desmond R. Lim, Hsin-Chiao Luan, Anuradha Agarwal, James Foresi, and Lionel C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619 (2000).
    [7] Marcuse D., “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48:3187-3215 (1969).
    [8] F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, Vol. 26, No. 10, pp. 977-986 (1994).
    [9] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technology Letters, Vol. 16, No. 7, pp. 1661-1663 (2004).
    [10] Yoshinori Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 6, pp. 1090-1101 (2002).
    [11] Atsushi Sakai, Go Hara, and Toshihiko Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE, Vol. 4283, pp. 610-618 (2001).
    [12] E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132 (1969).
    [13] Mordehai Heiblum, and Jay H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83 (1975).
    [14] Yurii A. Vlasov, and Sharee J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, Vol. 12, No. 8, pp. 1622-1631 (2004).
    [15] Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997 (1997).
    [16] Kane S. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, Vol. AP-14, No. 3, pp. 302-307 (1966).
    [17] Amnon Yariv, Pochi Yeh, Photonics: optical electronics in modern communications, Sixth Edition, is part of The Oxford Series in Electrical and Computer Engineering, pp. 160-163, pp. 184-189, pp. 560-565, pp. 611-614 (2007).
    [18] Jia-Ming Liu, Photonic devices, Cambridge University Press, pp. 206-209 (2005).
    [19] Yao Jian-Yong, Zhang Sen, “Optical fiber mach-zehnder interferometer system” College Physics, Vol. 27, No. 5, pp. 37-40 (2008).
    [20] Shih-Hsiang Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” J. Opt. Soc. Am. B, Vol. 27, No. 5, pp. 941-947 (2010).
    [21] Brent E. Little, and Tom Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609 (1997).
    [22] Dan-Xia Xu, Adam Densmore, Philip Waldron, Jean Lapointe, Edith Post, André Delâge, Siegfried Janz, Pavel Cheben, Jens H. Schmid, and Boris Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Optics Express, Vol. 15, No. 6, pp. 3149-3155 (2007).
    [23] Dan-Xia Xu, Pavel Cheben, André Delâge, Siegfried Janz, Boris Lamontagne, Edith Post, Winnie N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. of SPIE, Vol. 6477, pp. 64770D.1-64770D.11 (2007).
    [24] Raha Vafaei, “Silicon on insulator ring resonators,” EECE 571U Course Project Report.
    [25] Dominik G. Rabus, and Michael Hamacher, “MMI-coupled ring resonators in GaInAsP-InP,” IEEE Photonics Technology Letters, Vol. 13, No. 8, pp. 812-814 (2001).
    [26] Milan M. Milošević, Milos Nedeljkovic, Taha M. Ben Masaud, Ehsan Jaberansary, Harold M. H. Chong, “Silicon waveguides and devices for the mid-infrared,” Applied Physics Letters, Vol. 101, No. 12, pp. 121105-121105-4 (2012).
    [27] J. Pello, P. Saboya, S. Keyvaninia, J. J. G. M. van der Tol, G. Roelkens, H. P. M. M. Ambrosius, and M. K. Smit, “Post-bonding fabrication of photonic devices in an indium phosphide membrane bonded on glass,” Proceedings of the 16th Annual Symposium of the IEEE Photonics Benelux Chapter, Ghent, Belgium, pp. 213-216 (2011).
    [28] Lei Bi, Juejun Hu, Lionel Kimerling, and C. A. Ross, ”Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. of SPIE, Vol. 7604, p. 760406-1 (2010).
    [29] Jan Niehusmann, Andreas Vӧrckel, and Peter Haring Bolivar, ”Ultrahigh- quality-factor silicon-on-insulator microring resonator,” Optics Letters, Vol. 29, No.24, pp. 2861-2863 (2004).

    無法下載圖示 全文公開日期 2018/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE