簡易檢索 / 詳目顯示

研究生: 蔡朝洋
Chao-Yang Tsai
論文名稱: 轉移矩陣法應用於具聯結器平行失準之轉子系統振動分析
Transfer Matrix Method to Vibration Analysis Containing Coupler Offsets of Rotor Systems
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 黃以玫
Yi-Mei Huang
丁 鯤
Kuen Ting
呂森林
Sen-Lin Lu
胡毓忠
Yuh-Chung Hu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 轉移矩陣法失準失衡
外文關鍵詞: transfer matrix method, misalignment, unbalance
相關次數: 點閱:274下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 轉移矩陣法廣泛地應用於一般轉子系統之動態特性分析,本研究旨在擴充轉移矩陣法的理論使之可應用於失衡、對心失準轉子系統之振動分析。本文將聯結器之平行失準區分成全域及局部平行失準,個別建立其模型,並將二者對系統所產生之效應分別討論之。理論之推導以轉子系統具單一失準所對應之轉移矩陣為開端,延伸至多個失準之複雜系統,並結合常見於系統中之組成元件,從而得到一可求解系統含有失衡、多重聯結器平行失準之振動響應的方法。
    首先,以修正轉移矩陣法之觀念配合旋轉軸之連續系統運動方程式,推導出旋轉軸所對應的轉移矩陣。推導過程中,發現旋轉軸之邊界在兩正交方向產生剪力藕合之現象,此剪力藕合效應對系統之臨界轉速造成了一定程度的影響,尤其在邊界條件為自由-自由的情況下,系統之第一臨界轉速降低50%左右。
    研究的結果呈現,聯結器之勁度影響了系統的臨界轉速,而失準向量之效應則相似於外部負載之激振作用,並且影響至整個被驅動之所有元件。當系統同時存在圓盤失衡與聯結器失準時,由頻率響應函數可觀察出,系統之振動響應在低轉速區間由失準效應所主宰,唯系統之轉速提升至某一程度時,因離心力的增加,使失衡圓盤之效應逐漸明顯而成主導之地位。另外,在轉子系統具多重失準之分析中,本文以兩失準互為同相及反相之情況比較系統動態特性之差異,結果顯示,全域平行失準中之反相失準將導致響應振幅的明顯增加,尤其在高轉速之情況下更為顯著,且振幅之增加與平行失準距離呈線性比例關係;而全域失準中之同相失準其所對應的響應振幅較反相為低,此乃因同相失準之兩失準彼此間之響應有相互消減的作用產生,方造成同相響應低於反相響應。至於局部失準之現象,其同相與反相之響應關係恰與全域失準之響應趨勢相反。
    當系統存在多重聯結器平行失準時,因系統之失準向量個數亦隨之增加及全域失準或局部失準之前後順序等因素,將使對應之矩陣方程式更趨於複雜。文中為了明確的呈現全域失準及局部失準之差異性,乃以相同的失準向量及參數對二者作比較。由公式的推演及數值分析的結果得知,無論在失準之前後,全域平行失準所產生的響應振幅皆大於局部平行失準,主要原因是全域失準向量之累積效應。最後就系統存在失衡及兩種不同的失準型態在某些臨界轉速區間,探討其渦旋軌跡之變化。
    本研究所推導之理論及經由數值分析所獲得之結果,皆能以合理的物理意義解釋,故本分析方法可提供工程人員有用的資訊外,亦可作為工程師在分析轉子系統動態特性中,有價值之選擇工具。


    The transfer matrix method has been widely applied to vibration analysis of rotor systems. The purpose of this research is to extend the TMM to include both imbalance and coupler’s misalignment/offset for rotor dynamics. In this study, the effect of coupler misalignment/offset was categorized into global and local misalignment/offset will be modeled and discussed separately. The derivation of the theory begins with as simple as single offset and then extends it to multiple offsets and in conjunction with other elements to form a complete tool for rotors. Furthermore the TMM proposed by this research would be applied to unbalanced disk, and multiple coupler global or/and local offsets with various boundary conditions.
    First of all, the governing equations of a rotating shaft and its corresponding transfer matrix were derived via the transfer matrix method (TMM) in a continuous fashion. Through the derivation, the boundary shears induced by a rotating shaft were first discovered to be coupled in two perpendicular directions. These coupling shears might reduce the first critical speed up to 50% in the most critical free-free case.
    The studies indicated that shafts coupler altered the rotor’s critical speeds and the misalignment played as an external excitation resulting through the whole driven shaft. The combined effects of disk imbalance and shaft misalignment showed that the misalignment predominated the response in lower rotational speeds but the imbalance take over at higher speeds. As to multiple offset cases, two offsets in- and anti-phase in a typical rotor were illustrated. The results showed that for the global offset in anti-phase case, the offset caused significant increase in response amplitude at high rotation and the increase was linearly proportional to offset value. As to its in-phase case, the response’s increases were insignificant. That implied an opposite offset would cancel out major response of the previous offset. However, the result of coupler local offset appears to be in contrary result to that of coupler global offset.
    When a system exists multiple offsets with global and/or local, the equations of motion become much more complicated. To clearly examine the difference between global and local offset in which the offset distance is assumed the same. It is as expected that the global offset has imposed more significant dynamic effects since all the offsets accumulated thereafter. At last, the whirling orbits before and after the global and local offset as rotation fell within a certain range were illustrated as well.
    The derived theory and corresponding numerical results were illustrated and explained from physical viewpoints. Though the development, this approach reveals useful information for rotor analysis and is hence expected to provide an efficient technique for rotor dynamics.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 符號說明 IX 圖表索引 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2轉子系統之文獻回顧 4 1.3轉移矩陣法之文獻回顧 6 1.4轉子系統失準之文獻回顧 7 1.5本文架構 10 第二章 轉子系統各類元件之轉移矩陣 13 2.1撓性轉軸之轉移矩陣 14 2.2失衡圓盤之轉移矩陣 18 2.3油膜軸承之轉移矩陣 20 2.4聯結器平行失準之轉移矩陣 21 2.4.1聯結器具全域平行失準之轉移矩陣 22 2.4.2聯結器具局部平行失準之轉移矩陣 25 2.5結果與討論 27 第三章 轉子系統具多重平行失準之轉移矩陣方程式 35 3.1轉子系統具多重全域平行失準之矩陣方程式 35 3.2轉子系統具多重局部平行失準之矩陣方程式 39 3.3結果與討論 40 第四章 轉子系統具全域平行失準之振動分析 45 4.1轉子系統具單一全域平行失準之振動分析 45 4.1.1全轉移矩陣與振動響應分析 45 4.1.2數值分析 47 4.2轉子系統具多重全域平行失準之振動分析 50 4.2.1全轉移矩陣與振動響應分析 50 4.2.2數值分析 51 4.3結果與討論 54 第五章 轉子系統具局部平行失準之振動分析 75 5.1轉子系統具單一局部平行失準之振動分析 75 5.1.1全轉移矩陣與振動響應分析 75 5.1.2數值分析 76 5.2轉子系統具多重局部平行失準之振動分析 78 5.2.1全轉移矩陣與振動響應分析 78 5.2.2數值分析 79 5.3結果與討論 81 5.4全域平行失準與局部平行失準動態特性之比較 82 第六章 結論與未來研究方向 94 6.1結論 94 6.2未來研究方向 98 參考文獻 101 附錄 111 作者簡介 114

    [1] Eshleman, R. L. and Eubanks, R. A., 1967, “On the Critical Speeds of a Continuous Shaft-Disk System,” ASME Journal of Engineering for Industry, pp. 645-652.
    [2] Chivens, D. R. and Nelson, H. D., 1975, “The Natural Frequencies and Critical Speeds of a Rotating, Flexible Shaft-Disk System,” ASME Journal of Engineering for Industry, pp. 881-886.
    [3] Özgüven, H. Nevzat, 1984, “On the Critical Speed of Continuous Shaft-Disk Systems,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 106, pp. 59-61.
    [4] Yamamoto, Toshio, 1959, “On Critical Speeds of a Shaft Supported by a Ball Bearing,” ASME Journal of Applied Mechanics, pp. 199-204.
    [5] Lund, J. W., 1987, “Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings,” ASME Journal of Tribology, Vol. 109, pp. 37-41.
    [6] Gasch, R., 1976, “Vibration of Large Turbo-Rotors in Fluid-Film Bearings on an Elastic Foundation,” Journal of Sound and Vibration, Vol. 47(1), pp. 53-73.
    [7] Glasgow, D. A. and Nelson, H. D., 1980, “Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis,” ASME Journal of Mechanical Design, Vol. 102, pp. 352-359.
    [8] Adams, M. L. and Padovan, J., 1981, “Insights into Linearized Rotor Dynamics,” Journal of Sound and Vibration, Vol. 76(1), pp. 129-142 .
    [9] Adams, M. L., J., 1987, “Insights into Linearized Rotor Dynamics, Part2,” Journal of Sound and Vibration, Vol. 112(1), pp. 97-110 .
    [10] Huang, S. C., Chang, C. I. and Su, C. K., 1994, “A New Approach to Vibration Analysis of Undamped Rotor-Bearing Systems,” Trans. CSME, Vol. 15(5), pp. 465-478.
    [11] Huang, S. C. and Su, C. K., 1997, “Receptance Method to the Sensitivity Analysis of Critical Speeds to Rotor Supports Stiffness,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 119(3), pp. 736-739.
    [12] Huang, S. C. and Lin, C. A., 2002, “Sensitivity Analysis and Optimization of Undamped Rotor Critical Speeds to Supports Stiffness,” ASME Journal of Vibration and Acoustics, Vol. 124, pp. 296-301.
    [13] Nelson, H. D. and McVaugh, J. M., 1976, “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98(2), pp. 593-600.
    [14] Özgüven, H. N. and Özkan, Z. L., 1984, “Whirl Speeds and Unbalance Response of Multibearing Rotors Using Finite Elements,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 106, pp. 72-79.
    [15] Diken, H. and Tadjbakhsh, I. G., 1989, “Unbalance Response of Flexible Rotors Coupled with Torsion,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 111(2), pp. 179-186.
    [16] Subbiah, R., Bhat, R. B. and Sankar, T. S., 1989, “Dynamic Response of Rotors Using Modal Reduction Techniques,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 111 (4), pp. 360-365.
    [17] Shiau, T. N. and Hwang, J. L., 1989,“A New Approach to the Dynamic Characteristic of Undamped Rotor-Bearing Systems,” ASME Journal of Vibration Acoustics ,Stress, and Reliability in Design, Vol. 111, pp. 379-385.
    [18] Raffa, F. A. and Vatta, F., 1996, “The Dynamic Stiffness Method for Linear Rotor-Bearing Systems,” ASME Journal of Vibration and Acoustics, Vol. 118, pp. 332-339.
    [19] Huang, D.G., 2007, “Characteristics of Torsional Vibrations of a Shaft with Unbalance,” Journal of Sound and Vibration, Vol. 308, pp. 692-698.
    [20] Myklestad, N. O., 1944, “A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams,” Journal of the Aeronautical Sciences, pp. 153-162.
    [21] Prohl, M. A., 1945, “A General Method for Critical Speeds of Flexible Rotors,” Journal of Applied Mechanics, Vol. 67, pp. A-142-148.
    [22] Lund, J. W. and Orcutt, F. K., 1967, “Calculations and Experiments on the Unbalance Response of a Flexible Rotor,” ASME Journal of Engineering for Industry, Vol. 89, No. 4, pp. 785-796.
    [23] Lund, J. W., 1974, “Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings,”ASME Journal of Engineering for Industry, Vol. 96, pp. 509-517.
    [24] Lund, J. W., 1974, “Modal Response of a Flexible Rotor in Fluid-Film Bearings,”ASME Journal of Engineering for Industry, Vol. 96, pp. 525-533.
    [25] Darlow, M. S., Murphy, B. T., Elder, J. A. and Sandor, G. N., 1980, “Extension of the Transfer Matrix Method for Rotordynamic Analysis to Include a Direct Representation of Conical Sections and Trunnions,” ASME Journal of Mechanical Design, Vol. 102, pp. 122-129.
    [26] Gu, J., 1986, “An Improved Transfer Matrix-Direct Integration Method for Rotor Dynamics, ” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, pp. 182-188.
    [27] Chao, S. W. and Huang, S. C., 1989, “On the Flexural Vibrations of Shaft-Disk Systems Using a Modified Transfer Matrix Method,” Proceedings of the 6th National Conference of the CSME, pp. 1607-1618.
    [28] Lee, A. C., Kang, Y and Liu, S. L., 1991, “A Modified Transfer Matrix Method for Linear Rotor-Bearing Systems,” ASME Journal of Applied Mechanics, Vol. 58(3), pp. 776-783.
    [29] Lee, A. C., Shih, Y. P. and Kang, Y., 1993, “The Analysis of Linear Rotor-Bearing Systems: A General Transfer Matrix Method,” ASME Journal of Vibration and Acoustics, Vol. 115(4), pp. 490-497.
    [30] 郭文章, 1995, “修正轉移矩陣法應用於分析轉子系統之動態特性,” 國立台灣工業技術學院機械工程技術研究所碩士論文, pp. 8-24, pp. 48-56.
    [31] Gupta, K. and Gupta, K. D. and Athre, K., 1993, “Unbalance Response of a Dual Rotor System: Theory and Experiment,” ASME Journal of Vibration and Acoustics, Vol. 115(4), pp. 427-435.
    [32] Rieger, N. F. and Zhou, S., 1998, “Development and Verification of Transfer Matrix Unbalance Response Procedure for Three-Level Rotor-Foundation Systems,” ASME Journal of Vibration and Acoustics, Vol. 120, pp.240-251.
    [33] Zu, J. W. and Ji, Z., 2002, “An Improved Transfer Matrix Method for Steady-State Analysis of Nonlinear Rotor-Bearing Systems,” ASME Journal of Engineering for Gas Turbines and Power, Vol.124, pp.303-310.
    [34] Maharathi, B. B., Dash, P. R. and Behera, A. K., 2004, “Dynamic Behaviour Analysis of a Dual-Rotor System Using the Transfer Matrix Method,” International Journal of Acoustics and Vibrations, Vol. 9(3), pp.115-128.
    [35] Pestel, E. C. and Leckie, F. A. 1963, “Matrix Methods in Elastomechanics,” McGraw-Hill, New York.
    [36] Rao, J.S., 1983, “Rotor Dynamics,” Wiley Eastern Limited.
    [37] Dimarogonas, A. D. and Paipetis, S. A., 1983, “Analytical Methods in Rotor Dynamics,” Applied Science Publishers, London, pp.144-193.
    [38] Goodwin, M. J., 1989, “Dynamics of Rotor-Bearing Systems,” Unwin Hyman Inc., Winchester.
    [39] Subbiah, R., and Rieger, N. F., 1988, “On the Transient Analysis of Rotor-Bearing Systems,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 110 (4), pp. 515-520.
    [40] Wu, F. and Flowers, G. T., 1992, “A Transfer Matrix Technique for Evaluating the Natural Frequencies and Critical Speeds of a Rotor with Multiple Flexible Disks,” ASME Journal of Vibration, Acoustics ,Vol. 114, pp. 242-248.
    [41] Dopkin, J. A. and Shoup, T. E., 1974, “Rotor Resonant Speed Reduction Caused by Flexibility of Disks,”ASME Journal of Engineering for Industry, pp. 1328-1335.
    [42] Hsieh, S. C., Chen, J. H. and Lee, A. C., 2008,“A Modified Transfer Matrix Method for the Coupled Lateral and Torsional Vibrations of Asymmetric Rotor-Bearing Systems,” Journal of Sound and Vibration, Vol. 312, pp. 563-571.
    [43] Dewell, D.L. and Mitchell, L.D., 1984, “Detection of a Misaligned Disk Coupling Using Spectrum Analysis,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 106, pp. 9-16.
    [44] Xu, M. and Marangoni, R.D., 1994, “Vibration Analysis of a Motor-Flexible Coupling-Rotor System Subject to Misalignment and Unbalance, PartΙ: Theoretical Model and Analysis,” Journal of Sound and Vibration, Vol. 176(5), pp.663-679.
    [45] Xu, M. and Marangoni, R.D., 1994, “Vibration Analysis of a Motor-Flexible Coupling-Rotor System Subject to Misalignment and Unbalance, Part II: Experimental Validation,” Journal of Sound and Vibration, Vol. 176(5), pp.681-691.
    [46] Sekhar, A.S. and Prabhu, B.S., 1995, “Effects of Coupling Misalignment on Vibrations of Rotating Machinery,” Journal of Sound and Vibration, Vol. 185(4), pp.655-671 .
    [47] Lee, Y.S. and Lee, C.W., 1999, “Modelling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems,” Journal of Sound and Vibration, Vol. 224(1), pp.17-32 .
    [48] Prabhakar, S., Sekhar, A.S. and Mohanty, A.R., 2001, “Vibration Analysis of a Misaligned Rotor-Coupling-Bearing System Passing through the Critical Speed,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 215, pp.1417-1428.
    [49] Al-Hussain, K.M. and Redmond, I., 2002, “Dynamic Response of Two Rotors Connected by Rigid Mechanical Coupling with Parallel Misalignment,” Journal of Sound and Vibration, Vol. 249(3), pp.483-498 .
    [50] Al-Hussain, K.M., 2003, “Dynamic Stability of Two Rigid Rotors Connected by a Flexible Coupling with Angular Misalignment,” Journal of Sound and Vibration, Vol. 266, pp.217-234.
    [51] Saavedra, P. N. and Ramirez, D. E., 2004, “Vibration Analysis of Rotors for the Identification of Shaft Misalignment, Part 1: Theoretical Analysis,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 218, pp. 971-985 .
    [52] Saavedra, P. N. and Ramirez, D. E., 2004, “Vibration Analysis of Rotors for the Identification of Shaft Misalignment, Part 2: Experimental Validation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 218, pp. 987-999 .
    [53] Huang, D., 2005, “Characteristics of Torsional Vibrations of a Shaft System with Parallel Misalignment,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 219, pp.1219-1224.
    [54] Hili, M. A., Fakhfakh, T., Hammami, L. and Haddar, M., 2005, “Shaft Misalignment Effect on Bearings Dynamical Behavior,” International Journal of Advanced Manufacturing Technology, Vol. 26, pp.615-622 .
    [55] Lees, A. W., 2007, “Misalignment in Rigidly Coupled Rotors,” Journal of Sound and Vibration, Vol. 305, pp 261-271.
    [56] Patel, T. H. and Darpe, A. K., 2009, “Vibration Response of Misaligned Rotors,” Journal of Sound and Vibration, Vol. 325, pp. 609-628.
    [57] Patel, T. H. and Darpe, A. K., 2009, “Experimental Investigations on Vibration Response of Misaligned Rotors,” Mechanical Systems and Signal Processing, Vol. 23 ,pp. 2236-2252.
    [58] Peng, Z., He, Y. Chen, Z. and Chu, F., 2002, “Identification of the Shaft Orbit for Rotating Machines Using Wavelet Modulus Maxima,” Mechanical Systems and Signal Processing, Vol. 16(4), pp. 623-635.
    [59] Pennacchi, P. and Vania, A., 2005 “Diagnosis and Model Based Identification of a Coupling Misalignment,” Shock and Vibration, Vol. 12 , pp.293-308.
    [60] Nikolajsen, J. L., 1998, “The Effect of Misalignment on Rotor Vibrations,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 120, pp. 635-640.

    QR CODE