簡易檢索 / 詳目顯示

研究生: 游凱斌
Kai-Bin You
論文名稱: 結合超重力旋轉填充床方式以強鹼水溶液吸收煙道氣中二氧化碳之研究
Study on Absorption of Carbon Dioxide by Alkali Hydroxide Aqueous Solution in Rotating Packed Bed
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 游承修
Cheng-Hsiu Yu
蔡伸隆
Shen-Long Tsai
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 碳捕捉技術化學吸收強鹼溶液超重力負碳
外文關鍵詞: Carbon capture technology, Carbon negative
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業革命以來,人類大量使用石化燃料,使得二氧化碳氣體排放劇增,造成全球暖化與氣候變遷。因此,在1997年《京都議定書》之後,「減碳」的議題逐漸受到各國政府及企業的重視,進而衍生出許多關於減碳的技術。而如何將二氧化碳以更有效率的方式吸收,並將捕碳後的產物,以更有效益的方式再利用,將是目前需要改善的課題。
    本研究將以強鹼溶液為吸收劑,並結合超重力系統來作為吸收二氧化碳的程序,來解決二氧化碳溶解度低、吸收效率不佳的問題,並將吸收後的產物,碳酸鹽、碳酸氫鹽,提供為微藻的養分來源。主要研究以鹼液的二階段碳酸化來計算並分析二氧化碳的捕獲效率、吸收程序的總質傳係數等指標,來評估包括轉速、進料氣液比、吸收劑等參數的優劣,並將最適化的參數進行實質減碳分析與經濟效益的評估。
    由實驗結果顯示,轉速為1000 rpm、進料氣液比32時,為本研究所使用的超重力系統之最佳操作參數,並進一步測試廢鹼液為吸收劑之可行性。總體而言,以碳酸鉀作為終端產物之吸收程序的負碳量最高,二氧化碳的捕獲率達78.9%,總質傳係數為0.47s-1,年負碳量可達56.3噸;而以1M氫氧化鉀作為吸收劑,二氧化碳的捕獲效率最高為78.9%,總質傳係數為0.47s-1,以碳酸氫鉀作為終端產物之吸收程序的淨利最高,年淨利可達57萬元。本系統已於實廠進行鍋爐尾氣的吸收實驗與微藻培養驗證,初步確定商業化之可行性。


    Since the Industrial Revolution, the extensive use of fossil fuels by humans has led to a significant increase in carbon dioxide (CO2) emissions, resulting in global warming and climate change. As a response, the issue of "carbon reduction" has gained attention from governments and businesses worldwide since the Kyoto Protocol in 1997. This has given rise to various carbon reduction technologies aimed at efficiently capturing CO2 and effectively utilizing the captured carbon products. However, challenges remain in improving the efficiency of CO2 absorption and finding beneficial ways to reuse the captured carbon products.
    To address these challenges, this research focuses on using a strong alkaline solution as an absorbent and combining it with a Higee system for CO2 absorption. By leveraging the advantages of the rotating packed bed, such as enhanced mass transfer, the aim is to overcome the limitations of low CO2 solubility and inefficient absorption. The captured carbon products, such as carbonates and bicarbonates, can be repurposed as a nutrient source for microalgae, providing a potential avenue for beneficial utilization.
    The study primarily focuses on analyzing the two-stage carbonation process of the alkaline solution to calculate key indicators such as CO2 capture efficiency and the overall mass transfer coefficient. Parameters including rotational speed, gas-liquid feed ratio, and absorbent properties are evaluated to determine their impact on system performance. Optimization of these parameters is conducted to achieve substantial carbon reduction and assess the economic benefits associated with the optimized conditions.
    The research findings indicate that a rotational speed of 1000 rpm and a gas-liquid feed ratio of 32 are identified as the optimal operational parameters for the rotating packed bed. Additionally, the feasibility of utilizing waste alkaline solution as the absorbent is tested. This study reveals that the absorption process with potassium carbonate as the end product demonstrates the highest negative carbon value, CO2 capture rate of 78.9%, and a total mass transfer coefficient of 0.47 s-1. Another notable finding is that using 1 M potassium hydroxide as the absorbent yields a CO2 capture efficiency of 78.9% and a total mass transfer coefficient of 0.47 s-1. The absorption process with potassium bicarbonate as the end product exhibits the highest net profit, with an annual net profit of 570,000 NTD. Furthermore, the system has been successfully tested for flue gas absorption and microalgae cultivation in an industrial setting, providing preliminary evidence of its commercial feasibility.
    In conclusion, this research aims to address the challenges of CO2 absorption and utilization by employing a strong alkaline solution and a rotating packed bed. The findings demonstrate the potential of the proposed approach in terms of CO2 capture efficiency and the utilization of captured carbon products. The successful implementation of the system in an industrial setting supports its commercial viability. Further research and development are needed to optimize and scale up the system for broader deployment while considering factors such as cost-effectiveness, environmental impact, and long-term sustainability.

    摘要...................... I ABSTRACT ........ II 目錄.................... IV 圖目錄.............. VII 表目錄................. X 第一章 緒論...... 1 1.1 前言...... 1 1.2 研究動機與目的....................................... 4 第二章 文獻回顧................................................... 6 2.1 二氧化碳介紹........................................... 6 2.1.1 二氧化碳之基本性質 ............................. 6 2.1.2 加速碳酸化 ............................................. 7 2.2 碳捕集與封存技術................................... 8 2.2.1 碳捕集與封存技術介紹 ......................... 8 2.2.2 物理法 ............................9 2.2.3 化學吸收法 ........................................... 13 2.2.4 生物固碳 ............................................... 17 2.3 碳權與ESG永續 ................................... 19 2.4 超重力技術............................................. 22 2.4.1 超重力技術之基本原理 ....................... 22 2.4.2 超重力技術之特性 ............................... 23 2.5 碳捕獲技術之比較................................. 26 第三章 實驗方法與步驟..................................... 28 3.1 實驗規劃................................................. 28 3.2 實驗藥品與分析儀器............................. 29 3.3 分析儀器................................................. 29 3.4 實驗裝置與流程..................................... 30 3.4.1 雙指示劑滴定 ....................................... 30 3.4.2 實驗設備與流程 ................................... 33 3.4.3 實驗參數與評估指標 ........................... 35 第四章 結果與討論............................................. 37 4.1 轉速對捕獲率之影響............................. 37 4.2 氣液比對捕獲率之影響......................... 41 4.3 濃度對捕獲率之影響............................. 45 4.3.1 以氫氧化鈉作吸收劑 ........................... 45 4.3.2 以氫氧化鉀作吸收劑 ........................... 49 4.4 不同種類之強鹼溶液對捕獲率之影響............. 53 4.5 以廢鹼液作吸收劑之捕獲結果............. 57 4.6 經濟評估................................................. 61 4.7 超重力系統之碳捕獲程序結合潔淨能源之可行性評估.......................... 67 第五章 結論與未來展望..................................... 69 5.1 結論..................................... 69 5.2 未來展望................................................. 70

    1 NOAA National Centers for Environmental Information. (2023, May). Climate at a Glance: Global Time Series. Retrieved from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series.
    Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press.
    Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery. Petroleum, 8(3), 291-317.
    United States Department of the Interior. (Fish and Wildlife Service). (1956, June). Fishery Leaflet 427: Cold Storage Design and Refrigeration Equipment: Refrigeration of Fish - Part 1 (p. 107).
    National Fire Protection Association. (2004). NFPA 2001: Standard on Clean Agent Fire Extinguishing Systems (2004 Edition). Quincy.
    Kaliyan, N., Morey, R. V., Wilcke, W. F., Alagusundaram, K., & Gayathri, P. (2007). Applications of Carbon Dioxide in Food and Processing Industries: Current Status and Future Thrusts. In 2007 ASAE Annual Meeting (pp. 076113) . doi:10.13031/2013.23553.
    Lin, C. C., Ho, T. J., & Liu, W. T. (2002). Continuous Distillation Experiment with Rotating Packed Bed. J. Chem. Eng. Jpn., 35, 1298.
    Liu, H. S., Lin, C. C., Wu, S. C., & Hsu, H. W. (1996). Characteristics of a rotating packed bed. Ind. Eng. Chem. Res., 35, 3590.
    Chiang, C. Y., Chen, Y. S., Liang, M. S., Lin, F. L., Tai, C. Y., & Liu, H. S. (2009). Higee Technology Development and Applications. J. Taiw. Inst. Chem. Eng., 40, 418.
    Lin, C. C., Lin, Y. H., & Tan, C. S. (2010). Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. J. Hazard. Mater., 175, 344.
    Lin, C. C., Chao, C. Y., Liu, M. Y., & Lee, Y. L. (2009). Feasibility of ozone absorption by H2O2 solution in rotating packed beds. J. Hazard. Mater., 167, 1014.
    Lin, C. C., & Liu, W. T. (2003). Ozone oxidation in a rotating packed bed. J. Chem. Technol. Biotechnol., 78, 138.
    Chen, J. F., Wang, Y. H., Guo, F., Wang, X. M., & Zheng, C. (2000). Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind. Eng. Chem. Res., 39, 948.
    IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
    國家發展委員會. (2022, 03). 臺灣 2050 淨零排放路徑及策略總說明. 台北, 臺灣. Retrieved from https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AA D8B38BD76.
    張良志. (2011, November 2). 石化產業在減少碳排放方面採取的一種途徑是碳捕捉與封存(Carbon Capture and Storage). 國際社會與政策研究中心. Retrieved from https://www.example.com/article.
    山豐化工公司. 溶劑化學吸收. Retrieved from http://www.sanfeng.com.tw /co2_01.htm.
    山豐化工公司. 溶劑物理吸收. Retrieved from http://www.sanfeng.com.tw /co2_01.htm.
    Chiang, C.-Y., Lee, D.-W., & Liu, H.-S. (2017). Carbon dioxide capture by sodium hydroxide-glycerol aqueous solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers, 72, 29-36.
    張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民 (2015年6月). 二氧化碳再利用─微藻養殖. 科學發展, 510期.
    The Royal Society. (June 2005). Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05, (pp. 5-6).
    Krauss, M., & Rzehak, R. (March 2017). Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models. Chemical Engineering Science, 166, 193-209.
    Chiang, P.-C., Pan, S.-Y., Chiang, P.-C., & Pan, S.-Y. (2017). Carbon Dioxide Mineralization and Utilization (1st ed.). Springer Nature Singapore Pte Ltd.
    IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. B. Metz, O. Davidson, H. C. de Coninck, M. Loos, & L. A. Meyer (Eds.). Cambridge University Press.
    CO2 Sciences and the Global CO2 Initiative, Innovation for Cool Earth Forum (ICEF). (2016). Global Roadmap for Implementing CO2 Utilization.
    Ravanchi, M. T., Kaghazchi, T., & Kargari, A. (2009). Application of Membrane Separation Processes in Petrochemical Industry: A Review. Desalination, 235, 199.
    胡蒨傑、魏大欽 (2009.09). 21世紀的新森林-氣體分離薄膜. 科學發展, 第429期.
    胡蒨傑、李魁然、賴君義 (2015). 碳膜之製備及其在氣體分離之應用. 化工, 第62卷, 第5期.
    Nik, O. G., Chen, X. Y., & Kaliaguine, S. (2011). Amine-Functionalized Zeolite FAU/EMT-Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. J. Membr. Sci., 379, 468.
    Kumar, S., Srivastava, S., & Vijay, Y. K. (2012). Study of Gas Transport Properties of Multi-Walled Carbon Nanotubes/Polystyrene Composite Membranes. Int. J. Hydrogen Energ., 37, 3914.
    Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309.
    Song, C., Kansha, Y., Fu, Q., et al. (2016). Reducing energy consumption of advanced PTSA CO2 capture process — experimental and numerical study. Journal of the Taiwan Institute of Chemical Engineers, 64, 69-78.
    Ntiamoah, A., Ling, J., Xiao, P., et al. (2016). CO2 Capture by temperature swing adsorption: use of hot CO2-rich gas for regeneration. Industrial & Engineering Chemistry Research, 55(3), 703-713.
    Skarstrom, C. W. (1960). Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption. US Patent, 2,944,627.
    Kikkinides, E. S., Yang, R. T., & Cho, S. H. (1993). Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption. Ind. Eng. Chem. Res., 32, 2714..
    Martunus, Z. H., Wheeb, A. D., Kim, J., & Othman, M. R. (2012). In Situ Carbon Dioxide Capture and Fixation from a Hot Flue Gas. Int. J. Greenh. Gas Con., 6, 179.
    Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials. Energy Procedia, 114, 2309-2400.
    Clausse, M., Merel, J., & Meunier, F. (2011). Numerical parametric study on CO2 capture by indirect thermal swing adsorption. International Journal of Greenhouse Gas Control., 5(5), 1206-1213.
    Eric T. Cole, Eugene R. Thomas and Ronald R. Bowen. Process for liquefying a natural gas stream containing at least one freezable component. US patent, 5956971A.
    Ghasem, N. (2020). Advances in Carbon Capture: Methods, Technologies and Applications. Pp. 479-501.
    Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K., et al. (1999). A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes. Chemical Engineering Research and Design, 77(1), 62-68.
    Abanades, J. C. (2002). The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chemical Engineering Journal, 90, 303-306.
    Abanades, J. C., & Álvarez, D. (2003). The conversion limits in the reaction of CO2 with lime. Energ. Fuel, 17, 308-315.
    Martínez, A., et al. (2012). Energy penalty reduction in the calcium looping cycle. International Journal of Greenhouse Gas Control, pp. 774-781.
    Folger, P. (2013). Carbon Capture: A Technology Assessment. CRS Report for Congress
    Chen, J., Li, H., Moullec, Y. L., Lu, J., Valle, M. J. C., & Chen, G. (2017). Process simulation for CO2 capture with the aqueous solution of 1-methylpiperazine and its mixture with piperazine. Energy Procedia, 1388-1393.
    Xue, B., Yu, Y., Chen, J., et al. (2017). A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations. Int J Coal Sci Technol, 4, 15-24.
    王聖潔, 李恩各, & 汪上曉. (2015). 以化學吸收法捕獲二氧化碳之程序系統工程. 能源與環境研究中心, 化學工程系, 國立清華大學.
    Keith, D., Ha-Duong, M., & Stolaroff, J. K. (2006). Climate strategy with CO2 capture from the air. Clim. Change, 74, 17-45.
    張雯媛. (2021). 結合旋轉填充床中以氫氧化鈉捕捉二氧化碳及沉澱法後處理程序開發. 化學工程研究所, 國立臺灣大學.
    Bassham, J., Benson, A., & Calvin, M. (1950). The path of carbon in photosynthesis. J Biol Chem, 185(2), 781-787.
    Thakur, S., Kumar, M., Varjani, S. J., Wu, Y., Gnansounou, E., Ravindran, S., et al. (2018). Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Science, 256, 478-490.
    Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T. Y., Higashide, W., et al. (2012). Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 335, 1596.
    Bi, C., Su, P., Müller, J., Yeh, Y. C., Chhabra, S. R., Beller, H. R., et al. (2013). Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production. BMC, 13.
    Srivastava, S., Bharti, R., & Thakur, I. S. (2015). Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate. Environ. Sci. Pollut. Res., 22, 1499-1511.
    CDP. (2021). Putting a price on carbon: The state of internal carbon pricing by corporates globally. Report. London.
    溫室氣體減量及管理法第24條第1項:「事業新設或變更排放源達一定規模者,應依溫室氣體增量之一定比率進行抵換。但進行增量抵換確有困難,向主管機關提出申請經核可者,得繳納代金,專作溫室氣體減量工作之用。」.
    李蘇竣. (2022年,12月28日). 國發會公布淨零中期戰略 2030年減碳目標24%. 台灣新聞. 環境資訊中心. Retrieved from https://e-info.org.tw/node/235796.
    World Bank. (2021). State and Trends of Carbon Pricing 2021. Washington, DC: World Bank.
    The Global Compact. (2004). Who Cares Wins: Connecting Financial Markets to a Changing World.
    Ramshaw, C., & Mallinson, R. H. (1981). Mass transfer process . US Patent No. US4283255A. Washington, DC: U.S. Patent and Trademark Office.
    Burtis, C. A., Ashwood, E. R., & Bruns, D. E. (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics - E-Book. Elsevier Health Sciences.
    呂詠哲. (2014). 以旋轉填充床回收水中氨氣之研究. 化學工程研究所, 國立台北科技大學.
    Blatkiewicz, M., Wojtasik-Malinowska, J., Zawadzki, D., Piątkowski, M., Hájek, O., Malý, M., Cejpek, O., & Jaskulski, M. (2023). Modeling and simulation of an enzymatic reactive absorption process in the internal zone of a rotating packed bed apparatus. Chemical Engineering and Processing - Process Intensification, 189, 109409.
    Zhang, W., Xie, P., Li, Y., Teng, L., & Zhu, J. (2020). Hydrodynamic characteristics and mass transfer performance of rotating packed bed for CO2 removal by chemical absorption: A review. Journal of Natural Gas Science and Engineering, 79, 103373.
    Keyvani, M., & Gardner, N. (1988). Operating characteristics of rotating beds. Chemical Engineering Progress. Retrieved from DOI: 10.2172/7279454 (Corpus ID: 94327245).
    蔡志楹. (2013).以旋轉填充床氣體水中氨氣之研究. 化學工程研究所, 國立台北科技大學.
    Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C., & Gardner, N. C. (2000). Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemical Engineering Science, 55(9), 1699-1706.
    Xie, P., Lu, X., Yang, X., Ingham, D., Ma, L., & Pourkashanian, M. (2017). Characteristics of liquid flow in a rotating packed bed for CO2 capture: A CFD analysis. Chemical Engineering Science, 172, 216-229.
    Zhang, J. P., Luo, Y., Chu, G. W., Seng, L., Liu, Y., Zhang, L. L., & Chen, J. F. (2017). A hydrophobic wire mesh for better liquid dispersion in air. Chemical Engineering Science, 170, 204-212.
    Chen, Y. H., Chang, C. Y., Su, W. L., Chen, C. C., Chiu, C. Y., Yu, Y. H., Chiang, P. C., & Chiang, S. I. M. (2004). Modeling Ozone Contacting Process in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 43(1), 228-236.
    Chen, Y. S. et. al. (2011). Correlations of mass transfer coefficients in a rotating packed bed. Industrial & Engineering Chemistry Research, 50(3), 1778-1785.
    Chen, Y. S., Lin, F. Y., Lin, C. C., Tai, C. Y. D., & Liu, H. S. (2006). Packing characteristics for mass transfer in a rotating packed bed. Industrial & Engineering Chemistry Research, 45(20), 6846-6853.
    Whitman, W. G. (1962). The two film theory of gas absorption. International Journal of Heat and Mass Transfer, 5(5), 429-433.
    Ozdemir, O., Çelik, M. S., Nickolov, Z. S., & Miller, J. D. (2007). Water structure and its influence on the flotation of carbonate and bicarbonate salts. Journal of Colloid and Interface Science, 314, 545-551.
    Schäfer, H., & Fennel, P. (1997). Solubility of carbon dioxide in organic solvents. Fluid Phase Equilibria, 140(1-2), 187-199.
    Angelova, M., Angelov, T., Valtcheva, I., & Skrzypczak-Jankun, E. (2009). Solubility of carbon dioxide in crown ethers. Journal of Chemical & Engineering Data, 54(11), 3140-3143.
    Mu, T., Zuo, Y., Chen, X., & Sun, H. (2011). Solubility of carbon dioxide in polyethylene glycol ethers. Journal of Chemical & Engineering Data, 56(6), 2744-2747.
    Ruiz-Rodriguez, A., Gonzalez-Salgado, D., & Iglesias-Silva, G. A. (2006). Solubilities of carbon dioxide and ethane in polyethylene glycol dimethyl ethers. Industrial & Engineering Chemistry Research, 45(4), 1382-1386.
    台灣電力公司, (民國112年), 簡要電價表. Retrieved from https://www.taipower.com.tw/tc/page.aspx?mid=238.
    台灣自來水公司, (民國111年), 近年水價資料表. Retrieved form https://data.gov.tw/dataset/86103.
    Winnipeg. (2021). Emission factors in kg CO2-equivalent per unit. Retrieved from https://www.winnipeg.ca › matmgt.
    經濟部工業局. (2018). 本土用基礎原物料碳足跡排放係數. https://www.idbcfp.org.tw/ViewData.aspx?nnid=229.
    林若蓁. (2017, April 18). 全國性氫能發展之整體規劃 [National Plan for Hydrogen Energy Development]. 財團法人台灣經濟研究院 [Taiwan Institute of Economic Research].
    Bloomberg NEF. (2019, July 10). Hydrogen: The Economics of Storage.
    太原麗子. (2019). 電解產氫技術簡介及日本發展現況研析. 工業技術研究院,能源知識庫.
    施怡君、王涵、蕭彗岑、黃偉任. (2023, March 25). 2022台灣能源情勢回顧. 國際社會與政策研究中心. Retrieved from https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1767-2022-open-energy-review.html
    Kumar, A., Du, F., & Lienhard, J. H. V. (2021). Caustic Soda Production, Energy Efficiency, and Electrolyzers. ACS Energy Letters, 6(10), 3563-3566.

    無法下載圖示 全文公開日期 2033/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE