簡易檢索 / 詳目顯示

研究生: 周豪緯
Hau-Wei Chou
論文名稱: 在超重力旋轉填充床中分別以臭氧、過氧化氫氧化去除氮氧化物之研究
Removal of Nitrogen Oxides in Air Streams by Ozonation and Hydrogen Peroxide Scrubber Solution in Rotating Packed Bed Contactor
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
劉志成
Jhy-Chern Liu
鄭福田
Fu-Tien Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 127
中文關鍵詞: 臭氧過氧化氫旋轉填充床一氧化氮(NO)洗滌器吸收
外文關鍵詞: ozone, hydrogen peroxide, rotating packed bed, nitric oxide (NO), scrbber, absorption
相關次數: 點閱:179下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大宗的氮氧化物氣體常經由化石燃料電氣廠與焚化廠的製程中排出,大部分對於此類氮氧化物的去除乃採用濕式吸收處理,於是出口煙道氣洗滌器設計、操作最佳化、洗滌液物理或化學吸收反應之研究有其必要性。
    本研究為探討一種創新的超重力旋轉填充床/臭氧氧化/過氧化氫氧化程序,臭氧對不溶性一氧化氮與二氧化氮有很高的反應效率,進一步反應為溶解性佳的五氧化二氮,有效提高氮氧化物的處理效率,再於超重力旋轉填充床內將氮氧化物吸收為硝酸。臭氧與超重力旋轉填充床程序去除氮氧化物效率在本研究發現為85-99%。在另一系統過氧化氫與旋轉填充床去除氮氧化物程序,過氧化氫洗滌液可有效提升一氧化氮的去除,其效果為75-87%.
    旋轉填充床反應器的特色是以離心的方式使液膜變薄或液滴變小,以增加氣液接觸面積進而提升質傳與反應為最終產物硝酸。以不同操作參數(臭氧濃度、過氧化氫濃度、氮氧化物濃度、旋轉填充床轉速、液氣化、水洗液pH值),對旋轉填充床氧化吸收程序反應動力加以探討,了解各反應因子對整體反應之影響。同時驗證超重力旋轉填充床處理氮氧化物之最佳條件,作為將來設計超重力旋轉填充床/臭氧反應器之參考依據。在本研究中亦發現吸收速率將會隨著轉速的提高與氣液比的降低而提高且在中性與鹼性溶液下有較佳的吸收效果,然而一氧化氮在過氧化氫水溶液的吸收效果在pH=11下卻漸漸的不明顯。


    This study is focused on the application of an innovative O3/RPB (Rotating Packed Bed) and H2O2/RPB process to the treatment of NOx in the gas streams. Ozone and NOx in the gas stream were injected into a gas phase reactor. Ozone rapidly reacts with insoluble NO and NO2 molecules to form soluble N2O5. The mixed gas from the gas phase reactor is then flows into a RPB reactor. NOx removal efficiencies of 85-99% were obtained for O3/RPB process. In another system,using hydrogen peroxide scrubbing process also showed to be viable to enhance the performance of the absorption system. NOx removal efficiencies of 75-87% were obtained for H2O2/RPB process.
    The oxidation-absorption process in rotating packed bed will be studied under various operating conditions including O3 concentration , H2O2 concentration, NO concentration , rotating speed, liquid/gas ratio and solution pH. Gas-liquid mass transfer and aqueous phase reaction will be discussed and the optimum experimental conditions will also be determined. For example, the absorption rate was greatly affected by the rotor speed for experiments conducted at lower gas/liquid flow rate ratio. The absorption of nitric oxide was favored to occur in neutral and alkaline solutions; however, the absorption rate of nitric oxide in H2O2 solution for experiment conducted at pH 11 was found to be mitigated.

    Acknowledgments………I English abstract…………II Chinese abstract………..ΙV Table of Contents………V List of Figures……………VΙΙΙ List of Tables…………X Chapter 1 Introduction……1 1.1Background…………1 1.2Objectives and Scope……2 Chapter 2 Literature Review……3 2.1 Technologies for Reduction of NOx……3 2.1.1 The source of NOx and impact……3 2.1.2 Decomposition of NOx by reduction method……6 2.1.3 Decomposition of NOx by oxidation method…9 2.1.4 Comparison of Technologies………15 2.2 NOx Reduction by Ozone Process……18 2.2.1 Description of NO/O3 Oxidation Process…18 2.2.2 Effect of NO2/NOx Molar Ratio……………21 2.2.3 Effect of Solution pH on NO2 Dissolution……22 2.2.4 Effect of Contactors on NO2 Dissolution………27 2.3 Rotating Packed bed…………………33 2.3.1 Principle and Conformation………33 2.3.2 Characteristic of Mass Transfer in Rotating Packed Bed………36 2.3.3 Operation Factors…………38 Chapter 3 Experiment………42. 3.1 Measurements………42 3.2 Chemicals………43 3.3 Apparatus and Reactor Design……44 3.4 Experimental Procedures……50 3.5 Framework of the Experiment.……52 Chapter 4 Results and Discussion………59 4.1 Mass Transfer Behavior of Ozone in a Rotating Packed Bed Reactor…60 4.1.1 Effect of Rotor Speed………60 4.1.2 Effect of Gas/Liquid Flow Rate Ratio…65 4.1.3 Effect of Nitric Oxide Dosage……71 4.1.4 Effect of Solution pH……73 4.2 Oxidation of NO to NO2 Using the Ozonization Method by Rotating Packed Bed Process…………75 4.2.1 Property of Nitric Oxide and Background Experiments……75 4.2.2 Effect of Rotor Speed……79 4.2.3 Effect of Gas/Liquid Flow Rate Ratio…83 4.2.4 Effect of Solution pH…………87 4.2.5 Effect of [NO](g)/[O3](g) Molar Ratio……92 4.3 Oxidation of NO to NO2 Using the Hydrogen Peroxide for Rotating Packed Bed Process………94 4.3.1 The Removal Efficiency of Nitric Oxide by H2O2/RPB Process……94 4.3.2 Effect of Rotor Speed………98 4.3.3 Effect of Gas/Liquid Flow Rate Ratio…102 4.3.4 Effect of Solution pH………106 Chapter 5 Conclusions and Recommendations………110 5.1 Conclusions………110 5.2 Recommendations………112 Nomenclature……113 Reference……114 Vita……………127

    Albet, J., Farines, V., Baig, J., Molinier, J. and Legay, C., “Ozone Transfer from Gas to Water in a Co-Current Upflow Packed Bed Reactor Containing Silica Gel,” Chem. Eng. J., Vol. 91, pp. 67-73 (2003).
    Anderson,W., Mark, H. and Skelley, A.P., “A Low Temperature Oxidation System for the Control of NOx Emissions Using Ozone Injection,” BOC Gases Presentation, The Institute of Clean Air Companies (1998.)
    Andrew, S. P.. S.,. and D. Hanson, “The Dynamics of Nitrous Gas Absorption,” Chem. Eng. Sci., Vol. 14, pp.105-112 (1961)
    Armor, J. N., “Influence of pH and Ionic Strength upon Solubility of NO in Aqueous Solution.” J. Chem. Eng. Data, Vol. 19, pp.82–84 (1974)
    Bader, H. and Hoigne J., “Determination of Ozone in Water by the Indigo Method,” Water Res., Vol. 15, pp. 449-456 (1981).
    Bader, H. and Hoigne J., “Determination of Ozone in Water by the Indigo Method: A Submitted Standard Method,” Ozone Sci. Eng., Vol. 4, pp. 169-176 (1982).
    Baveja, K. K.,Rao, D. S.,and Sarkar, M. K.” Kinetics of Absorption of Nitric Oxide in Hydrogen Peroxide Solution” J.chem.Eng.Japan,Vol.12 ,pp.322-325 (1979)
    Beltran, F. J., Encinar, J. M. and Alonso, M. A., “Nitroaromatic Hydrocarbon Ozonation in Water. 2. Combined Ozonation with Hydrogen Peroxide or UV Radiation,” Ind. Eng. Chem. Res., Vol. 37, pp. 32-40 (1998).
    Beltran, F. J., Gonzalez, M., Rivas, J. and Marin, M., “Oxidation of Mecoprop in Water with Ozone Combined with Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 33, pp. 125-136 (1994).
    Beltran, F. J., Ovejero, G. and Rivas, J., “Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 35, pp. 891-898 (1996).
    Beltran, F. J., Rivas, J., Garcia-Araya, J. F. and Navarrete, V., “Simazine Removal from Water in a Continuous Bubble Column by O3 and O3/H2O2,” J. Environ. Sci. Health, Vol. B36, pp. 809-819 (2001).
    Buchanan, J. E., “Holdup in Irrigated Ring Packed Towers Below the Loading Point,” Ind. Eng. Chem. Fundam., Vol. 6, pp. 400 (1967).
    Buhler, R. E., Staehelin, J. and Hoigne, J., “Ozone Decomposition in Water Studied by Pulse Radiolysis: 2. [˙OH] and [·OH4] as Chain Intermediates.,” J. Phys. Chem., Vol. 88, pp. 5999 (1984).
    Builtjes, P and Stern, R., ”Photochemical Processes: Emissions and Atmospheric Transports.” Combustion Pollution Reduction: New Technology in Europe, pp. 27-47 (1988)
    Burns, J. R. and Ramshaw, C., “Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,” Chem. Enq. Sci., Vol. 51, pp. 1347-1352 (1996).
    Buxton, G. V., Greenstock, C. L., Phillips Helman, W. and Ross, A. B., “Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (˙OH/˙O-) in Aqueous Solution,” J. Phys. Chem. Ref., Data. 17, pp. 513-885 (1988).
    Chen, Y. H., Chang, C. Y., Su, W. L., Chen, C. C., Chiu, C. Y., Yu, Y. H., Chiang, P. C., and Chiang, S. I. M., “Modeling Ozone Contacting Process in a Rotating Packed Bed,” Ind. Eng. Chem. Res., Vol. 43, pp. 228-236 (2004).
    Chen, Y. H., Chang, C. Y., Su, W. L., Chiu, C. Y., Yu, Y. H., Chiang, P. C., Chang, C. F., Shie, J. L., Chiou, C. S. and Chiang, S. I. M., “Ozonation of Cl Reactive Black 5 Using Rotating Packed Bed and Stirred Tank Reactor,” J. Chem. Techonl. Biotechnol., Vol, 80, pp. 68-75 (2005).
    Chen, Y.S., Lin, C.C. and Liu, H.S.”Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids.” Ind.Eng.Chem.Res. Vol. 44, pp1043-1051 (2005)
    Chen, Y. S. and Liu, H. S., “Absorption of VOCs in a Rotating Packed Bed,” Ind. Eng. Chem. Res., Vol. 41, pp. 1583-1588 (2002).
    Christensen, H., Sehested, K. and Corfitzen, H., “Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures,” J. Phys. Chem., Vol. 86, pp. 1588 (1982).
    Dangelo, C. and Mote, C.D., “Aerodynamically Excited Vibration and Flutter of Thin Disk Rotating at Supercritical Speed,” J. of sound and Vibration, Vol. 168, No. 1, pp.15-30 (1993).
    Den, W., Ko, F. H. and Huang, T. Y., “Treatment of Organic Wastewater Discharge From Semiconductor Manufacturing Process by Ultraviolet / Hydrogen Peroxide and Biodegradation,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, pp. 540-551 (2002).
    Elizardo, K., “Fighting Pollution with Hydrogen Peroxide,” Pollut. Eng., pp. 106-109 (1991).
    Evren, V., Cagatay, T. and Ozdural, A. R., “Carbon Dioxide-Air Mixtures: Mass Transfer in Recycling Packed-Bed Absorption Columns Operating under High Liquid Flow Rates,” Separation and Purification Technology, Vol. 17, pp. 89-96 (1999).
    Ferrell, R., Anderson, M. H., Hwang, S. C., Suchak, N. J., Kelton, R. and Tseng, J. T., ”Applications and Economic of Low Temperature Oxidation NOx Control.” Power-Gen 2000, USA (2000)
    Ferrell, R., Suchak, N., Kelton, R., Hine, H. and Nadkarni, S., ”Application of Low Temperature Oxidation for NOx Emissions Control on a Lead Recovrty Furnace” ACE 2003, USA (2003)
    Fogler, H. S., Elements of Chemical Reaction Engineering, 3rd Ed., Prentice Hall, New Jersey, USA (1999).
    Garoma, T. and Gurol, M. I., “Degradation of Tert-Butyl Alcohol in Dilute Aqueous Solution by an O3/UV Process,” Environ. Sci. Technol., Vol. 38, pp. 5246-5252 (2004).
    Glaze, W. H. and Kang, J. W., “Advanced Oxidation Processes. Description of a Kinetic Model for the Oxidation of Hazardous Materials in Aqueous Media with Ozone and Hydrogen Peroxide in a Semibatch Reactor,” Ind. Eng. Chem. Res., Vol. 28, pp. 1573-1580 (1989a).
    Guo, F., Zheng, C., Guo, K., Feng, Y. and Gardner, N. C., “Hydrodynamics and Mass Transfer in Cross-Flow Rotating Packed Bed,” Chem. Eng. Sci., Vol. 52, pp. 3853-3859 (1997).
    Hautaniemi, M., Kallas, J., Munter, R. and Trapido, M. “Modeling of Chlorophenol Treatment in Aqueous Solutions. 2. Ozonation under Basic Conditions,” Ozone Sci. Eng. Vol. 20, No. 4, pp. 283-302 (1998).
    Haywood, J. M.and Cooper, C. D. “The Economic Feasibility of Using Hydrogen Peroxide for Enhanced Oxidation and Removal of Nitrogen Oxides from Coal-Fired Power Plant Flue Gases.” J. Air Waste Manage. Assoc. Vol.48, pp.238- (1998)
    Hixson, S.E., Walker, R.F. and Skau,C.M.” Soil Denitrification Rate in 4 Sub-Alpine Plant Communities of the Sierra-Nevada” J. environ. qual, Vol.19,No.3, pp.617-620 (1990)
    Hoigné, J. and Bader, H., “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water: I,” Water Res., Vol. 17, pp. 173–183 (1983).
    Hoigne, J. and Bader, H., “Rate Constant of Reactions of Ozone with Organic and Inorganic Compounds in Water: II. Dissociating Organic Compounds,” Water Res. Vol. 17, pp. 185-194 (1983).
    Hoigne, J. and Bader, H., “The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions,” Water Res. Vol. 10, pp. 377–386 (1976).
    Iliuta, I., Iliuta, M. C. and Thyrion, F. C., “Gas-liquid Mass Transfer in Trickle-Bed Reactors: Gas-Side Mass Transfer,” Chem. Eng. Technol., Vol. 20, pp. 589 (1997).
    Kann, J. “Oxidation of Nitric Oxide by Potassium Permanganate,” Tr. Tallin.Polytecch.Inst.,Vol.402, No.65 (1977)
    Kasper, J. M.,Clausen, C. A. amd Cooper, C. D.”Control of Nitrogen Oxide Emissions by Hydrogen Peroxide-Enchanced Gas-Phase Oxidation of Nitric Oxide” J. Air Waste Manage. Assoc ,Vol 46, n2, pp.127-133.(1996)
    Kanto Denka, Kogyo Co., Ltd. 'N-Oxide Removal From Exhaust Gas,", Japanese Patent 4815766 (1973)
    Kerr, J., Alistair. and Stephen, J., CRC Handbook of bimolecular and Termolecular Gas Reactions, CRC Press, Inc., Boca Raton, USA (1982)
    Keyvani, M. and Gardner, N. C., “Operating Characteristics of Rotating Packed Beds,” Chem. Eng. Prog., Vol. 85, pp. 48-52 (1989).
    Komiyama, H., and H. Inoue, “Absorption of Nitrogen Oxides into Water,” Chem. Eng. Sci., Vol. 35,pp 154-161 (1980).
    Ku, Y. and Wang, W., “The Decomposition Kinetics of Monocrotophos in Aqueous Solutions by the Hydrogen Peroxide-Ozone Process,” Water Environ. Res., Vol. 71, pp. 18-22 (1999).
    Kumar, M. P. and Rao, D. P., “Studies on a High-Gravity Gas-Liquid Contactor,” Ind. Eng. Chem. Res., Vol.29, pp.917-920 (1990).
    Kumar, R. and Bose, P., “Development and Experimental Validation of the Model of a Continuous-Flow Countercurrent Ozone Contaceor,” Ind. Eng. Chem. Res., Vol. 43, pp. 1418-1429 (2004).
    Kuo, C. H., Yuan, F. and Hill, Donald O., “Kinetics of Oxidation of Ammonia in Solutions Containing Ozone With or Without Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 36, pp. 4108-4113 (1997).
    Langlais, B., Reckhow, D. A. and Brink, D. R. “Ozone in Water Treatment,” Application and Engineering, Lewis Publishers, Chelsea, MI, (1991).
    Legrini, O., Oliveros, E. and Braun, A. M., “Photochemical Processes for Water Treatment,” Chem. Rev., Vol. 93, pp. 671-698 (1993).
    Lin, C. C. and Liu, W. T., “Ozone Oxidation in a Rotating Packed Bed,” J. Chem. Technol. Biotechnol., Vol. 78, pp. 138-141 (2003).
    Lide , D. R., CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, and Boca, Raton, pp. 5–105,( 1998).
    Limvoranusirn, P., Cooper, C. D., John, D.D., Christian, A.C., Lucas, P.and Michelle, M.C.” Kinetic Modeling of the Gas-Phase Oxidation of Nitric Oxide Using Hydrogen Peroxide”J.Envir.Engrg.,Vol.131,Issue 4, pp.518-525 (2005)
    Linders, J., “Control by Variable Rotor Speed of a Fixed-Pitch Wind Turbine Operating in a Wide Speed Range,” IEEE Transaction on Energy Conversion, Vol. 8, No. 3, pp.520-526 (1993).
    Lin, S. H. and Wang C. S., “Recovery of Iisopropyl Alcohol from Waste Solvent of A Semiconductor Plant,” J. of Hazardous Materials, Vol. B106, pp. 161-168 (2004).
    Lipnizki, F., Field, R. W. and Ten, P.K., “Pervaporation-Based Hybrid Process: A Review of Process Design,” J. Membr. Sci., Vol. 153, pp. 183–210 (1999).
    Louis, J. and Jon, M. F., “Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide form L-arginine.” Proc.Natl.Acad.Sci.USA Vol.90, pp.8103-8107 (1993).
    Lozovskii, V. A.; S. S. Novoselov; V. A. Svetlichnyl; V. A. Ryzhikov; V. Y. Simachev, "The Role Of Ozone in Oxidising Reactions when it Interacts with the Flue Gases from Thermal Power Stations", Thermal Engineering, Vol. 35, No. 8, pp 442-444, (1988).
    Ma, H. W., Hsu, Y. C., Yang, H. C. and Kuo M. C., “The Effectiveness of a New Gas-Induced Reactor in Treating Phenolic Wastewater by Ozonation and Hydrogen Peroxide,” J. of Environ. Sci. and Health Part A, Vol. A38, pp. 619-630 (2003).
    Martin, A. “Estimated Washout Coefficients for Sulphur Dioxide, Nitric Oxide, Nitrogen Dioxide and Ozone” Atmos. Environ, Vol.18, No.9, pp.1955-1961 (1984)
    Mitchell, F., Sasa, K., Nenad, K.B., Leo, K., Sean, P., Pryor and William, A. ” Role of Nitrogen Oxides in Ozone Toxicity”, Croat. Chem. Acta, Vol 73, NO. 4, pp.141-1151 (2000)
    Mok, Y, S. and Lee, H. J.,” Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique”, Fuel Processing Technology, Vol 87, pp591-597,(2006).
    Mok, Y. S.,Yoon, E.Y. ,Dors, M. ,and Mizeracyk, J., “Optimum NO2/NOx ratio for efficient selective catalytic reduction”,acta physica slovaca ,Vol.55 ,No.5,pp.467-478 (2005)
    Mok, Y. S., “Oxidation of NO to NO2 Using the Ozonization Method for the Improvement of Selective Catalytic Reduction”, J. Ceram. Soc. Jpn, Vol.37,No.11, pp.337-1344 (2004)
    Munjal, S., Duduković, M. P. and Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlation,” Chem. Eng. Sci., Vol. 44, pp. 2245-2256 (1989a).
    Munjal, S., Duduković, M. P. and Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-II. Experimental Results and Comparison with Theory and Gravity Flow,” Chem. Eng. Sci., Vol. 44, pp. 2257-2268 (1989b).
    Munter, R., Preis,S., Kamenev,S. and Siirde, E., “Methodology of Ozone Introduction into Water and Wastewater Treatment,” Ozone Sci. Eng., Vol. 15, pp. 149–165 (1993).
    Nelo, S. K., Leskela, K. M. and Sohlo, J.J.K, “Simultaneous Oxidation of Nitrogen Oxides and Sulfur Dioxide with Ozone and Hydrogen Peroxide” Chem. Eng. Technol, Vol.20, pp.40-42 (1997).
    Novoselov, S. S., Gavrilov, A. F., Svetlichnyi, V. A., Chmovzh, V. E., Simachev, V.Y. and Zaplatinskaya, I. M., ”The Ozone Method of Removing SO2 and NOx from the Flue Gases of Thermal Power Stations,” Therm. Eng.,Vol.33, n.9,pp.30-33 (1986).
    Ohtsuka, K., Yukitake, T. and Shimoda, M., "Oxidation Characteristics of Nitrogen Monoxide in Corona Discharge Field", Proc. Inst. Electrostat Japan, Vol. 9, No. 5, pp 346-351,( 1985).
    Paillard, H., Brunet, R. and Dore, M., “Optimal Conditions for Applying an Ozone-Hydrogen Peroxide Oxidizing System,” Water Res., Vol. 22, pp. 91-103 (1988).
    Perry, R. H., and Green, D., Chemical Engineers’ Handbook, 60th ed., McGraw Hill, USA (1984)
    Pershing, D. W.”Influence of Design Variables on the Production of Thermal and Fuel NO from Residual Oil and Coal Combustion,” Ameican Institute of Chemical Engineers Symposium Series, Vol.148 ,No.71 (1975)
    Pradhan, M. P and Joshi, J. B.“Absorption of NOx Gases in Aqueous NaOH Solutions:Selectivity and Optimization,” AlChE J., Vol. 45, No.1, pp. 38-50 (1999).
    Ramshaw, C. and Mallinson, R. H., “Mass Transfer Process,” U. S. Patent 4283255 (1981).
    Ramshaw, C., “HIGEE Distillation-An Example of Process Intensification,” Chem. Engr., February (389), pp.13-14 (1983).
    Rao, D. P., Chandra, A. and Goswami, P. S., “Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing,” Ind. Eng. Chem. Res., Vol. 44, pp. 4051-4060 (2005).
    Rice, R. G.., “Ozone for the Treatment of Hazardous Materials,” Water-1980, AIChE Symp. Ser., Vol. 77, pp. 79-107 (1980).
    Robinson, S “Hydrogen Peroxide: First Aid for Air Pollution,” Natl Environ J, Vol 21 n1,pp. 45-53. (1993)
    Roustan, M., Mallevialle, J., Roques, H. and Jones, J. P., “Mass Transfer of Ozone to Water a Fundamental Study,” Ozone Sci. Eng., Vol. 2, pp. 337-344 (1981).
    Sada, E., Kumazawa, H. and Butt, M. A.” Absorption of Lean NO, in Aqueous Solutions of NaClO2, and NaOH ” J.Chem.Eng.Data.,Vol.23,pp.161-165 (1978)
    Sada, E., Kumazawa, H., Hayakawa, N. Kudo, I. And Kondo, T.,” Absorption of NO in an alkaline solution of KMnO4” Chem.Eng.Sci.,Vol.32, pp. 1171-1175 (1977)
    Schwartz, S. E., White, W. H.,” Solubility Equilibria of the Nitrogen Oxides and Oxyacids in Dilute Aqueous Solutions,” Environ. Sci. Technol, Vol. 4, Gordon and Breach Science Publishers, USA (1981)
    Shanley, A., Ondrey, G. and Moore, S., “Pervaporation Finds Its Niche,” Chem. Eng., Vol. 10, pp. 34–37 (1994).
    Simachev, V. Y., Novoselov S. S., Svetlichnyi V. A., Gorokhov M. V., Semenov V. I., Ryzhikov V. A. and Demchuk V. V.,"Investigation of the Ozone-Ammonia Method of Simultaneous Desulphurisation and Denitrification of Flue Gases when Burning Donetsk Coals", Thermal Engineering, Vol. 35, No. 3, pp 171-175, (1988).
    Sinclair, J. “Ozone Loss Will Hit Health and Food” New Scientist, Vol. 125, pp.27, UK (1990)
    Sloss, H. ,Soud, C.,and Shareef, M.,”Nitrogen Oxide Control Technology Fact Book” Noyes Data Corporation, USA (1992)
    Sotelo, J. L., Beltran, F. J., Benitez, F. J. and Beltran-Heredia, J., “Henry’s Law Constant for the Ozone-Water System,” Water Res., Vol. 23, pp. 1239-1246 (1989).
    Staehelin, J. and Hoigne, J., “Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide,” Environ. Sci. Technol., Vol. 16, pp. 676-681 (1982).
    Suh, J. H. and Mohseni, M., “A Study on the Relationship Between Biodegradability Enhancement and Oxidation of 1,4-Dioxane Using Ozone and Hydrogen Peroxide,” Water Res., Vol. 38, pp. 2596-2604 (2004).
    Takahashi, S “Oxidation of Nitrogen Monoxide in a Waste Gas,” Japan Kokai:7937095,CA-91:p78463b (1979)
    Thomas, D and Vanderschuren, J., “Nitrogen Oxides Scrubbing with Alkaline Solutions,” Chem.Eng.Technol, Vol. 23, No.5, pp. 449-455 (2000).
    Thompson, R.E. and McElroy, M. W.”Effectiveness of Gas Recirculation and Staged Combustion in Reducing NOx in a 560 MW Coal Fired Boiler,”Electric Power Resrarch Institute, Nation Technical Information Service PB 260582,(1976)
    Trapido, M., Hivronen, A., Veressinina, Y., Hentunen,J. and Munter, R., “Ozonation, Ozone/UV and UV/H2O2 Degradation of Chlorophenols,” Ozone Sci. Eng., Vol. 19, pp. 75–96 (1997).
    Treybal, R. E., “Mass Transfer Operations,” third ed., McGraw-Hill, New York (1987).
    Tung, H. H. and Mah, R. S. H., “Modeling Liquid Mass Transfer in Higee Separation Process,” Chem. Eng. Commun., Vol.39, pp.147-153 (1985).
    Uchida, S., Kobayashi, T., and Kageyama, S. “Absorption of nitrogen monoxide into aqueous KMnO4/NaOH and Na2SO3/Fe2SO4 solutions”, Ind. Eng. Chem. Process Des.Vol 22 , pp. 323–329 (1983)
    U.S. Environmental Protection Agency “Nitrogen Oxides (NOx), Why and How They are Controlled,” Prepared by Clean Air Technical Center (MD-12), Research Triangle Park, NC, 27711, EPA 456-99-006R (1999)
    Vivian, J. E., Brian, P. L. T. and Krukonis, V. J., “The Influence of Gravitational Force on Gas Absorption in a Packed Column,” AIChE J., Vol. 11, pp. 1088-1091 (1965).
    Vural, E., Tuncay, C. and Ahmet, R. O., “Carbon Dioxide-Air Mixtures: Mass Transfer in Recycling Packed-Bed Absorption Columns Operating under High Liquid Flow Rates,” Separation and Purification Technology, Vol. 17, pp. 89-96 (1999).
    Weir, B. A., Sundstrom, D. W. and Klei, H. E., “Destruction of Benzene by Ultraviolet Light-Catalyzed Oxidation with Hydrogen Peroxide,” Hazardous Waste and Hazardous Materials., Vol. 4, pp. 165 (1987).
    Xianliou, M., Dazhang, H., Rongji, H. and Taiping, X., “Gas Holdup and Volumetric Liquid Phase Mass Transfer Coefficients in a Downjet Loop Reactor,” Chem. Eng. J., Vol. 49, pp. 49 (1992).
    Yang, C.L., Hsu, C. H., Chen, L., ”Oxidation and Absorption of Nitric Oxide in a Packed Tower with Sodium Hypochlorite Aqueous Solution,” Environmental Progress,Vol.24,No.3,pp.279-288 (2005)
    Yang, C. L., Henry. S.,” Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide,” Environmental Progress,Vol.17,No.2, pp.80-85 (2007)
    Zeldovich, Y. B.”The Oxidation of Nitrogen in Combustion and Explosions,” Acta Physicochim, Vol.21,pp.577-583 (1946)
    林木興,「在旋轉填充床反應器中以臭氧處理2-氯酚水溶液反應及質傳行為之研究」,90學年碩士論文,國立台灣科技大學化學工程研究所 (2002)。
    林佳璋、劉文宗,「超重力技術的原理與進展」,化工資訊,二月,頁數16-21 (2003)。
    紀岩勳,「在旋轉填充床反應器中以臭氧相關程序處理含甲酚水溶液之研究」,91學年碩士論文,國立台灣科技大學化學工程研究所 (2003)。
    張介林,「以臭氧及紫外線/臭氧程序處理含有機磷農藥水溶液反應行為之研究」,83學年碩士論文,國立台灣工業技術學院化學工程技術研究所 (1995)。
    張君正等人,氮氧化物生成機制與控制技術之探討,工業污染防治季刊,第50期 (1994).
    陳修斌,「氣泡形成對臭氧質傳及其對含2-氯酚水溶液分解反應行為之影響」,88學年碩士論文,國立台灣科技大學化學工程研究所 (2000)。
    顧洋,「高級氧化程序在廢水處理上的應用,工業污染防治技術手冊」,經濟部工業局 (1993)。

    無法下載圖示 全文公開日期 2012/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE