簡易檢索 / 詳目顯示

研究生: 王士維
Shih-wei Wang
論文名稱: 上游平板對正向方柱在橫風中的流場特性與受力之影響
Effects of Upstream Flat Plate on Flow and Force Characteristics of a Square Cylinder at Zero Incidence
指導教授: 黃榮芳
Rong-fung Huang  
口試委員: 孫珍理
Chen-li Sun
林怡均
Yi-jiun Lin
張家和
Chir-ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 207
中文關鍵詞: 流場特徵渦旋逸放升阻力特性
外文關鍵詞: flow pattern, vortex shedding, lift&drag
相關次數: 點閱:326下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對平板置於方柱上游之結構物受到氣流衝擊時之流場,探討平板與方柱之間的距離(L/D)、平板與方柱的寬度比(d/D)及雷諾數的變化,對平板與方柱之間的流場、方柱表面壓力分佈、升阻力特性以及尾流區渦旋逸放之流場結構的影響。在一氣動力風洞中,藉由煙線可視化技術與煙霧可視化技術觀察平板與方柱之間及方柱尾流流場的特徵,使用表面壓力孔與壓力掃描技術量測方柱表面的壓力分佈,並計算升、阻力係數,同時探討壓力分佈及平板與方柱之間流場特徵的相關性。使用熱線風速儀量測平板與方柱之間及方柱尾流區動態結構的頻率、尾流速度場、尾流寬度、尾流雷諾正向應力、統計尾流紊流特性,並將結果與平板與方柱之間的流場特徵相結合。平板與方柱之間流場的模態與平板距離方柱的遠近有緊密的相關性,依平板離方柱距離的不同由近到遠,可以觀察到流體流經平板,在平板與方柱之間產生渦旋逸放(Mode A),及在平板上下兩側產生剪流層流經方柱(Mode B)兩種模態。在從模態B轉變成模態A的時候,阻力係數皆會上升,在d/D ≥ 0.50時,模態B的阻力係數會呈現負值。根據熱線風速儀量測方柱尾流量化的資料,可以發現在模態B時也會因為平板距離方柱的遠近,而造成方柱尾流速度場、紊流強度、雷諾正向應力有所不同。很明顯的,平板與方柱之間的距離,造成平板與方柱之間的流場改變,而影響了方柱表面的壓力分佈與尾流渦旋逸放及流場的特性。


    The flow around the square cylinder is controlled by a flat plate fixed at the upstream area. Fluid forces acting on the square cylinder, vortex shedding frequency and flow patterns are systematically investigated. The flat plate width is varied from 0.25, 0.50, 0.75 and 1.00 times the width of the square cylinder. The perpendicular distance between the flat plate and the square cylinder is varied from 0.5 to 5.0 times the width of the square cylinder. Flow characteristics around square cylinder in a cross-stream at incidence are experimentally studied by smoke-wire technique at Reynolds numbers between 8x102 and 1.5x104. Vortex shedding characteristics and pressure distributions are measured by hot-wire anemometer and home-made linear pressure scanner. The effects of the flat plate on the square cylinder’s flow patterns, pressure distribution on the square cylinder’s surface, and wake properties are revealed and discussed. Two different flow patterns, namely: pattern A and B, are observed around the square cylinder at various positions of the flat plate. Flow pattern A showed vortex shedding formed between two objects. On the other hand, flow pattern B has one of the separated shear layers of the flat plate attached to the surface of the square cylinder. Drag acting on the cylinder obviously increases when the flow pattern is changed from B to A. Different behaviors of pressure distributions, drag, Strouhal number of vortex shedding, turbulence in the wake, and wake width are found in each of the flow pattern.

    摘要…………………………...………………….…………………… i Abstract……………………….………………….…………………… ii 誌謝…………………………………………………………………… iii 目錄…………………...……………….……………………………… iv 符號索引……………………………...………………………………. vii 表圖索引……………………………………...………………………. ix 第一章 緒論………………………………...………………………... 1 1.1 研究動機…………………………………………………….... 1 1.2 文獻回顧……………………………...………………………. 2 1.2.1 矩形柱與方柱之流場特性……………………………... 2 1.2.2 平板之流場特性………………………………………... 5 1.2.3 方柱受上游平板影響之流場特性…………………....... 7 1.3 研究目標……………………………...………………………. 8 第二章 研究構思及實驗設備、儀器與方法………………………… 9 2.1 研究構思..……………………….……..….…………….……. 9 2.2 實驗設備………………………….…………………….…….. 9 2.2.1 風洞………………………………………….………….. 9 2.2.2 方柱模型…………………….…………………..……… 11 2.2.3 平板的材質……………………….…………………..… 11 2.3 實驗儀器及方法…………………………………….………... 12 2.3.1 自由流速的偵測……………….…………………..…… 12 2.3.2 煙線流場可視化……………………………………..…. 12 2.3.3 煙霧微粒產生器…………………………………………. 15 2.3.4 表面油膜流法…………………...……………………….. 15 2.3.5 壓力掃描器………………………………………….. 22 2.3.6 尾流渦漩流逸頻率的偵測……………………………... 23 2.3.7 方柱的二維性…………………………………………... 24 第三章 平板尾流特性……………………………………………….. 25 3.1 渦旋逸放………..…………………………………………….. 25 3.2 尾流長度………..…………………………………………….. 26 第四章 平板與方柱之間的流場特徵模態………………………..… 27 4.1 煙線動態流場型態……………...……………………………. 27 4.2 流場模態特徵區域………………………………………….... 29 第五章 受上游平板影響方柱上下游之動態流場頻率特性……….. 31 5.1 尾流煙線流場型態............…………………………………… 31 5.1.1 尾流渦旋逸放的二維性………………………………... 33 5.2 頻率特性……………………………………………………… 34 5.2.1 平板與方柱之間之頻率特性…………………………... 34 5.2.2 方柱尾流之頻率特性…………………………………... 35 5.3 討論…………………………………………………………… 37 第六章 受上游平板影響方柱之尾流流場………………………….. 39 6.1 速度場………………………………………………………… 39 6.2 紊流強度與正向應力………………………………………… 40 6.2.1 相對與絕對紊流強度…………………….…………….. 41 6.2.2 無因次雷諾相對正向應力與絕對正向應力…………... 42 6.3 尾流寬度……………………………………………………… 42 6.4 統計特性……………………………………………………… 43 6.4.1 概率密度函數…………………………….…………….. 43 6.4.2 相關性係數……………………………….…………….. 44 6.4.3 特徵長度尺度…………………………….…………….. 45 第七章 受上游平板影響之方柱受力.…………….………………… 46 7.1 方柱表面壓力係數分佈…….…………….………………….. 46 7.1.1 方柱I面壓力係數分佈………………….…………….. 47 7.1.2 方柱Ⅱ、Ⅲ面壓力係數分佈…………….…………….. 48 7.1.3 方柱IV面壓力係數分佈…..…………….…………….. 49 7.1.4 雷諾數對方柱表面壓力係數之影響…….…………….. 50 7.2 方柱表面升阻力係數………..……………………………….. 50 第八章 結論與建議..…………….……………………………….. 53 8.1 結論..…………….……………………………………………. 53 8.2 建議..…………….……………………………………………. 55 參考文獻………………………………………………………….…. 56

    [1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics,
    Arnold, Great Britain, 1999.
    [2] Matsumoto, M., “Vortex shedding of bluff bodies: A review,” Journal of Fluids and Structures, Vol. 13, No. 7-8, 1999, pp. 791-811.
    [3] Bearman, P. W. and Trueman, D. M., “An investigation of the flow around rectangular cylinders,” Aeronautical Quarterly, Vol. 23, Pt. 3, 1972, pp. 229-237.
    [4] Noda, H. and Nakayama, A., “Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section,” Experiments in Fluids, Vol. 34, No. 3, 2003, pp. 332-344.
    [5] Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol. 123, Oct. 1982, pp. 379-398.
    [6] Yang, W. J., Flow Visualization III, Proceedings of the third international symposium on flow visualization, September 6-9, 1983, pp. 381-386.
    [7] Luo, S. C., “Vortex wake of a transversely oscillating square cylinder: A flow visualization analysis,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 43, No. 1, 1992, pp. 97-119.
    [8] Bearman, P. W. and Obasaju, E.D., “An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders,” Journal of Fluid Mechanics, Vol. 119, Jun. 1982, pp. 297-321.
    [9] 林柏豪, 二維方柱之流場與動態渦旋研究, 碩士學位論文, 台灣科技大學機械工程系, July 2007.
    [10] Saha, A. K., Muralidhar, K. and Biswas, G., “Experimental study of flow past a square cylinder at high Reynolds numbers,” Experiment in Fluids, Vol. 29, No. 1-6, 2000, pp. 553-563.
    [11] Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
    [12] Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, 1983, pp. 140-145.
    [13] Hasan, M. A. Z., “The near wake structure of a square cylinder,” International Journal of Heat and Fluid Flow, Vol. 10, No. 4, 1989, pp. 339-348.

    [14] Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
    [15] Taylor, I. and Vezza, M., “Prediction of unsteady flow around square and rectangular section cylinders using discrete vortex method,” Journal of wind Engineering and Industrial Aerodynamics, Vol. 82, No. 1-3, 1999, pp. 247-269.
    [16] Lee, B. E., “The effect of turbulence on the surface pressure field of a square prism,” Journal of Fluid Mechanics, Vol. 69, part 2, 1975, pp. 263-282.
    [17] Norberg, C., “Flow around rectangular cylinders: pressure forces and wake frequencies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, No. 1-3, 1993, pp. 187-196.
    [18] Naudascher, J. R. and Weske, B. F., “Exploratory study on damping of galloping vibrations,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 8, 1981, pp. 211-222.
    [19] Koutmos, P. and Mavridis, C., “A computational investigation of unsteady separated flows,” International Journal of Heat and Fluids Flow, Vol. 18, No. 3, 1997, pp. 297-306.
    [20] Murakami, S. and Mochida, A., “On turbulent vortex shedding flow past 2D square cylinder predicted by CFD,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 54-55, Feb. 1995, pp. 191-211.
    [21] Tamura, T. and Kuwahara, K., “Numerical study of aerodynamic behavior of a square cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, No. 1-2, 1990, pp. 161-170.
    [22] Vickery, B. J. “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream,” Journal of Fluid Mechanics, Vol. 25, part 3, 1966, pp. 481-494.
    [23] Nakagachi, H., Hashimoto, K. and Muto, S., “An experimental study on aerodynamic drag of rectangular cylinders,” Journal of the Japanese Society for Aeronautical and Space Science, Vol. 16, No. 168, 1968.
    [24] Otsuki, Y., Fujii, K. Washizu, K. and Ohya, A., “Wind tunnel experiments on aerodynamic force and pressure distributions of rectangular cylinder in a uniform flow,” 5th Symposium on Wind Effects on Structures in Japan, 1978, pp. 169-175.

    [25] Mizota, T. and Okajima, A., “On the separated flow and variation of fluid force around a rectangular cylinder with section ratio 0.4 to 1.5 in a uniform flow,” In: Proceedings of the 7th Symposium on Wind Engineering Japan Association for Wind Engineering Tokyo, 1982, pp. 75-81.
    [26] Obasaju, E. D., “An investigation of the effects of incidence on the flow around a square section cylinder,” Aeronautical Quarterly, Vol. 34, 1983, pp. 243-259.
    [27] Durao, D. F. G., Jertor, M. and Pereira, J., “Measurement of turbulent and periodic flow around a square cross-section cylinder,” Experiments in Fluids, Vol. 6, No. 5, 1988, pp. 298-304.
    [28] Lyn, D. and Rodi, W., “The flapping shear layer formed by flow separation from the forward corner of square cylinder,” Journal of Fluid Mechanics, Vol. 267, May. 1994, pp. 353-376.
    [29] Roberson, J. A., Lin, C. Y., Rutherford, G. S. and Stine, M. D., “Turbulence effects on drag of sharp-edged bodies,” Journal of the Hydraulics Division, Vol. 98, No. 7, 1972, pp. 1187-1203.
    [30] Knisely, C. W., “Strouhal numbers of rectangular cylinders at incidence: A review and new data,” Journal of Fluids and Structures
    , Vol. 4, No. 4, 1990, pp. 371-393.
    [31] Sarioglu, M., Akansu, Y. E. and Yavuz, T., “Control of flow around square cylinders at incidence by using rod,” AIAA Journal, Vol. 43, No. 7, 2005, pp. 1419-1426.
    [32] Bearman, P. W., “Vortex shedding from oscillating bluff bodies,” Annual Review of Fluid Mechanics, Vol. 16, Jan. 1984, pp. 195-222.
    [33] In, K. M., Choi, D. H. and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
    [34] Dennis, S. C. R., Qiang, W., Coutanceau, M. and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechanics, Vol. 248, Mar. 1993, pp. 605-635.
    [35] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171.
    [36] Huang, R. F., Liu, G. S., Lin, S. Y., Chen, Y. K., Wang, S. C., Peng, C. Y., The, W. Y., Chen, C. W., Chang, C. P., “Development and Characterization of a Wake-Controlled Exterior Hood,” Journal of Occupational and Environmental Hygiene, Vol. 1, Dec. 2004, pp. 769-778.

    [37] Sakamoto, H., Tan, K., Takeuchi, N., Haniu, H., “Suppression of Fluid Forces Acting on a Square Prism by Passive Control,” Journal of Fluids Engineering, Vol. 119, No. 3, 1997, pp. 506-511.
    [38] Zhou, L., Cheng, M., Hung, K. C., “Suppression of Fluid Forces on a Square cylinder by flow Control,” Journal of Fluids and Structures, Vol. 21, No. 8, 2005, pp. 151-167.
    [39] Shames, I. H., Mechanics of Fluid, 3rd ed., McGraw-Hill, Singapore, 1992, pp. 632.
    [40] Batill, S. M., and Mueller, T. J., “Visualization of transition in the flow over an airfoil using the smoke-wire technique,” AIAA Journal,
    Vol. 19, No. 3, 1981, pp. 340-345.
    [41] Flagan, R. C., and Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp.
    295-307.
    [42] Maskell, E. C., Flow Separation in Three Dimensions, Royal Aircraft Estabilishment Report, No. 2565, 1955.
    [43] Schlichtingm, H., Boundary Layer Theory, 7th ed, McGraw-Hill, New York, 1993, pp. 699.
    [44] Squire, L. C., “The motion of a thin oil sheet under the steady boundary layer on a body,” Journal of Fluid Mechanics, Vol. 11, No. 2, 1961, pp. 161-179.
    [45] Shames, I. H., Mechanics of Fluid, 3rd ed., McGraw-Hill, Singapore, 1992, pp. 632.
    [46] Merzkrich, W., Flow Visualization, Academic Press, New York, 1974, pp. 53-56.
    [47] Igarashi, T., “Drag reduction of a square prism by flow control using a small rod,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, Jul-Oct, 1997, pp. 141-153.
    [48] Igarashi, T., Nobuaki, T., “Drag reduction of flat plate normal to airstream by flow control using a rod,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 3-4, 2002, pp. 359-376.
    [49] Roshko, A., “On The Drag and Shedding Frequency of Two-Dimensional Bluff Bodies,” N.A.C.A Tech., No. 3169, 1954.
    [50] Mahbub Alam, MD., Moriya, M., Takai, K., Sakamoto, H., “Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow,” Journal of Fluids and Structures, Vol. 16, No. 8, 2002, pp. 1073-1092.

    QR CODE