簡易檢索 / 詳目顯示

研究生: 黃興上
Shing-shang Huang
論文名稱: 三分歧左冠狀動脈之流場型態數值分析
Numerical analysis of flow patterns in trifurcate left coronary arteries
指導教授: 陳明志
Ming-jyh Chern
口試委員: 吳銘庭
Ming-ting Wu
張宏
Hung Zhang
林怡均
Yi-jyun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 192
中文關鍵詞: 三分歧左冠狀動脈左中央支剪應力彎管流
外文關鍵詞: trifurcate, left coronary arteries, left ramus intermediate, shear stress, Dean flow
相關次數: 點閱:235下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用數值方法來模擬真實人體的左冠狀動脈(Left Coronary Artery,
    LCA)中血液流動情況。所分析的左冠狀動脈血管是運用電腦斷層掃描(Computer
    Tomography, CT) 所取得, 且來自於不同的病例資料,因此分歧的角度、血管的管
    徑及幾何等情形皆不相同。針對健康的兩分歧(bifurcate)與三分歧(trifurcate)的
    左冠狀動脈以有限體積法進行流場型態分析與血液對管壁造成表面應力之研究,
    並比較其差異性。針對這些不同情形的左冠狀動脈, 本研究將觀察血液的流場型
    態以及作用在管壁上的表面應力分布, 且對心血管病變情況進行預測。
    由流場的結果可以發現, 在收縮與舒張加速時期, 其流場呈現平順的流動, 而
    在舒張減速時期,流場變化較為劇烈。而由於分歧角度的影響,使得左前降支(Left
    Anterior Descending, LAD) 或左旋支(Left Circumflex, LCX) 入口處外側會形成
    不穩定的渦漩效應, 對管壁形成震盪剪應力與低剪應力之作用, 因此可能容易傷
    害到血管的內膜,時間日積月累之後,可能有發生動脈粥樣硬化症的危險。除了分
    歧角度造成流場變化之外, 彎管狀血管的最彎處在心臟舒張減速時, 會形成彎管
    流(Dean flow) 或渦漩效應的現象,此情況亦會增加動脈粥樣硬化症的機會。從流
    量上可以發現, 血液流量會受到管徑及分歧角度所影響, 血管管徑愈大血液流量
    也愈大, 而分歧的角度愈大所流入的流量也就愈多。與兩分歧左冠狀動脈的比較,
    三分歧左冠狀動脈多了左中央支(Left Ramus Intermediate, LRI) 的存在, 在壓力
    分布上, 提高分歧區中央高壓的範圍, 增加壓力的損失及剪應力的震盪性,更提高
    了渦漩效應發生的臨界角度, 因此左中央支(LRI) 對於左冠狀動脈流場有很大的
    影響力。


    The aim of this study is to investigate variations of blood flows in vitro Left Coronary Arteries(LCA) using numerical approaches. The geometry of LCA comes from Computer Tomography(CT) measurements of 5 patients, so the angles of
    trifurcation, diameter, curvature of blood vessels are different. Subsequently, we analyze flow patterns and stress distributions in bifurcate and trifurcate LCA using a finite volume model. We are consider blood flows in LCA with various geometric parameters, observe flow patterns and surface stress distributions on the artery walls, and predict possibility of cardiovascular diseases. In terms of the obtained numerical results, the blood flows smoothly in acceleration of systole and diastole, but flow patterns change seriously in deceleration of diastole. Due to the influence of angles of bifurcation, there are vortices close to the outside walls at Left Anterior Descending(LAD) or Left Circumflex(LCX) entrance. The oscillatory and low shear stress caused by a vortical flow affects the vessel walls. Hence the vessel intima may be injured by variation of stress. As a result, it will become atherosclerotic for a long term in LCA. In addition to the influence of angle, a Dean flow is observed in the curved part of LCA in deceleration of diastole. It may cause astherosclerosis under this condition. The mass flow rate of blood is proportional to diameter and angle of bifurcation. LRI
    not only increases pressure loss and oscillatory shear stress in trifurcate area, but also raises the critical angle with vortical effect. Therefore flow patterns of LCA are influenced obviously by LRI.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 導論1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 左中央支(Left Ramus Intermediate, LRI) 簡介. . . . . . . 3 1.3 動脈粥樣硬化症簡介. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 物理模型與數值方法11 2.1 左冠狀動脈的幾何模型簡介與建構方法. . . . . . . . . . . . . 11 2.2 數學模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 統御方程式. . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 計算參數之定義. . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 最大剪應力之定義. . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 邊界條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 CT 影像處理方法. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 計算網格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 網格點的產生方法. . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 格點模型建立. . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 計算流力軟體之簡介及方法. . . . . . . . . . . . . . . . . . . . 20 2.6 數值模擬模式與參數設定. . . . . . . . . . . . . . . . . . . . . . 22 2.7 計算設備和時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8 數值驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.9 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 三分歧左冠狀動脈之流場型態分析25 3.1 一般兩分歧左冠狀動脈流場型態與壓力分析. . . . . . . . . . 25 3.2 三分歧左冠狀動脈流場型態與壓力分析. . . . . . . . . . . . . 27 3.2.1 計算例一左冠狀動脈之流場型態與壓力分析. . . . . . 28 3.2.2 計算例二左冠狀動脈之流場型態與壓力分析. . . . . . 29 3.2.3 計算例三左冠狀動脈之流場型態與壓力分析. . . . . . 31 3.2.4 計算例四左冠狀動脈之流場型態與壓力分析. . . . . . 32 3.2.5 計算例五左冠狀動脈之流場型態與壓力分析. . . . . . 33 3.3 各例的三分歧左冠狀動脈之流場型態比較. . . . . . . . . . . . 34 3.4 左冠狀動脈血管影響流場之因素. . . . . . . . . . . . . . . . . . 35 3.4.1 分歧區角度的影響. . . . . . . . . . . . . . . . . . . . . . 35 3.4.2 幾何彎曲的影響. . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 三分歧管壁表面應力分布. . . . . . . . . . . . . . . . . . . . . . 40 3.6 各例的血液質量流率比較. . . . . . . . . . . . . . . . . . . . . . 41 3.7 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 三分歧與兩分歧左冠狀動脈的比較45 4.1 兩分歧左冠狀動脈流場型態與壓力分析. . . . . . . . . . . . . 45 4.2 三分歧與兩分歧左冠狀動脈管壁之表面壓力與剪應力分析比 較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 兩分歧與三分歧左冠狀動脈的血液質量流率比較. . . . . . . . 49 4.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 結論與建議51 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    [1] Caro, C.G., Fitz-Gerald, J.M. and Schroter, R.C., 1971, Atheroma and arte-
    rial wall shear: Observation, Correlation and proposal of a shear: Dependent
    mass transfer mechanism for antherogenesis. Proceedings of the Royal Society
    of London B171, 109-159.
    [2] Fry, D.L., 1976, Hemodynamic forces in atherogenesis. Cerebrovascular Disease, Raven Press, New York, 77-95.
    [3] Slager, C.J., Wentzel, J.J., Gijsen, F.J.H., Thury, A., Schaar, J.A. and Serruys, P.W., 2005, The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Cardiovascular Medicine 2, 456-464.
    [4] McDonald, D.A., 1955, The relation of pulsatile pressure to flow in arteries. Journal of Physiology 127, 533-552.
    [5] Cheng, C., Tempel, D., Haperen, R.V., Baan, A.V.D., Grosveld, F., Daemem,
    Mat J.A.P., Krams, R. and Crom, R.D., 2006, Atherosclerotic lesion size and
    vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744-2753.
    [6] Laffon, E., Claire, G.L., Laurent, F., Ducassou, D. and Marthan, R., 2003,
    MRI quantification of the role of the reflected pressure wave on coronary and
    ascending aortic blood flow. Physiological Measurement 24, 681-692.
    [7] Ku, D.N., 1997, Blood flow in arteries. Annual Review of Fluid Mechanics
    29, 399-434.
    [8] He, X. and Ku, D.N., 1996, Pulsatile flow in the human left coronary atrery
    bifurcation: Average conditions. Journal of Biomechanical Engineering 118,
    74-82.
    [9] Friedman, M.H., O’Brien, V. and Ehrlich, W., 1975, Calculations of pulsatile flow through a branch : implications for the hemodynamics of atherogenesis. Circulation Research 36, 277-285.
    [10] Long, Q., Xu, X.Y., Ramnarine, K.V. and Hoskins, P., 2001, Numerical in-
    vestigation of physiologically realistic pulsatile flow through arterial stenosis. Journal of Biomechanics 34, 1229-1242.
    [11] Kim, Y. H. and Lee, J. S., 2007, The effect of hematocrit and shear rate on blood viscosity in a coronary artery. The Eighteenth International Symposium
    on Transport Phenomena, Daejeon, KOREA.
    [12] Jung, J., Lyczkowski, R.W., Panchal, C.B. and Hassanein, A., 2006, Multi-
    phase hemodynamic simulation of pulsatile flow in a coronary artery. Journal
    of Biomechanics 39, 2064-2073.
    [13] Shao, C.W., 2007, Numerical analysis of flow patterns in healthy and
    atherosclerotic left coronary arteries. Master Thesis of Department of Mechanical Engineering of National Taiwan University of Science and Technology
    .
    [14] Perktold, K., Hofer, M., Rappitsch, G., Loew, M., Kuban, B.D. and Friedman, M.H., 1998, Validated computation of physiologic flow in a relistic coronary artery branch. Journal of Biomechanics 31, 217-228.
    [15] Suo, J., Oshinski, J. and Giddens, D., 2003, Entrance flow patterns in coronary arteries: A computational study. Proceedings of Summer Bioengineering
    Conference, Florida, USA.
    [16] Zeng, D., Ding, Z., Friedman, M.H. and Ethier, C.R., 2003, Effects of car-
    diac motion on right coronary artery hemodynamics. Annals of Biomedical
    Engineering 31, 420-429.
    [17] Langengove, G.V., Wentzel, J.J., Krams, R., Slager, C.J., Hamburger, J.N.
    and Serruys, P.W., 2000, Helical velocity patterns in a human coronary artery:
    A three-dimensional computational fluid dynamic reconstruction showing the
    relation with local wall thickness. Circulation 102, e22-e24.
    [18] Rammos, K.St., Koullias, G.J., Pappou, T.J., Bakas, A.J., Panagopoulos,
    P.G. and Tsangaris, S.G., 1998, A computer model for the prediction of left
    epicardial coronary blood flow in normal, stenotic and bypassed coronary
    arteries, by single or sequential grafting. Cardiovascular Surgery 6, 635-648.
    [19] Singh, M.P. and Sinha, P.C., 1978, Flow in the entrance of the aorta. Journal of Fluid Mechanics 87, part 1, 97-120.
    [20] Walburn, F.J. and Schneck, D.J., 1976, A constitutie equation for whole
    human blood. Biorheology 13, 201-210.
    [21] ESI GROUP, 2006, CFD-ACE+ V2006 Modules Manual. ESI CFD Inc., Hu,
    Al, USA.
    [22] Zienkiewicz, O.C., The Finite Element Method in Engineering Science.
    McGraw-Hill, 1971.
    [23] Benchimol, A., Fred Stegall, H. and Gartlan, J.L., 1971, New method to
    measure phasic coronary blood velocity in man. American Heart Journal 81,
    93-101.
    [24] Perry, A.E. and Steiner, T.R., 1987, Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation process. Journal of Fluid Mechanics 174, 233-270.
    [25] Berger, S.A., Talbot, L. and Yao, L.S., 1983, Flow in curved pipes. Annual
    Review of Fluid Mechanics 15, 461-512.
    [26] Rodriguez-Granillo, G.A., Rosales, M.A., Degrossi, E., Durbano, I. and Ro-
    driguez, A.E., 2007, Multislice CT coronary angiography for the detection
    of burden, morphology and distribution of atherosclerotic plaques in the left
    main bifurcation. The International Journal of Cardiovascular Imaging 23,
    389-392.
    [27] Dean, W.R., 1928, Note on the motion of fluid in a curved pipe. Philosophical Magazine 7, 208-223.

    QR CODE