簡易檢索 / 詳目顯示

研究生: 金德昌
De-Chang Jin
論文名稱: 永磁式同步電動機之設計及其轉速控制系統研製
Design and Speed Control of Permanent-Magnet Synchronous Motors
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 陳明宏
Ming-Hung Chen
葉勝年
Sheng-Nian Yeh
張松助
Sung-Jhu Jhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 頓轉轉矩永磁式同步電動機霍爾元件
外文關鍵詞: cogging torque, permanent-magnet synchronous motor, Hall-effect sensors
相關次數: 點閱:228下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本文旨在分析及設計永磁式同步電動機,並回授轉速發電機之端電壓經過數位信號處理器,提供三相永磁式同步電動機磁場角位置及轉速估測。在電動機分析及設計方面,採用有限元素電磁場解析套裝軟體Maxwell 2D分析永磁式同步電動機之磁飽和曲線、磁路結構及磁通密度分布等磁路特性和感應電動勢、電樞反應及交、直軸電感等電氣特性作分析。文中將轉子的磁石利用二只各一半積厚的磁石且磁石位移相位角,近似轉子斜槽以消除三相永磁式同步電動機之頓轉轉矩,並以此規格及尺寸製作電動機。本文已建立永磁式同步電動機於轉子同步旋轉座標系統之交、直軸動態模型,並完成具有轉速及磁場角位置估測之轉速與電流閉迴路控制。
  本文採用德州儀器公司所生產之數位信號處理器TMS320F2808作為整體系統之控制核心,由軟體程式實現控制,完成三相永磁式同步電動機之轉速、電流閉迴路控制。本文已完成12槽14極之永磁式同步電動機製作,其感應電動勢與轉速呈線性關係,且感應電動勢電壓總諧波失真率為1.03 %,與設計值0.95 %相接近,驗證軟體之準確性。本文已建立轉速為200 rpm、輸出轉矩5 N-m及輸出功率100 W之永磁式同步電動機驅動器,利用轉速發電機及霍爾元件回授之訊號,當轉速低於50 rpm時,用霍爾偵測電路透過數位信號處理器之數位輸入腳接收信號估測磁極初始角位置;轉速高於50 rpm時,可回授轉速發電機之端電壓經過數位信號處理器作運算,提供三相永磁式同步電動機磁極角位置估測及轉速估測之轉速與電流閉迴路控制,其電流總諧波失真率為2.84%,驗證轉速發電機及霍爾信號偵測元件於永磁式同步電動機之磁場角位置及轉速估測時之正確性。


  This thesis is concerned with the design and speed control of permanent-magnet synchronous motors. An auxiliary generator is used to estimate rotor position and speed to facilitate speed and torque controls. The flux analysis software Maxwell 2D is used to analyze characteristics of flux density distribution, cogging and pulsation torques, equivalent rotor flux linkage, quadrature- and direct-axis inductances, and no-load induced voltage of the designed motor. Besides, the phase-shift, half-thickness interior permanent-magnet embedded in oblique slot of rotor is implemented to yield less torque fluctuation and current ripple. The quadrature and direct-axis dynamic models of the motor in rotor frame are derived to facilitate the speed and current closed-loop control using rotor flux orientation as well as the measurement of motor parameters.
  In this thesis, the digital signal processor TMS320F2808 is used for the speed and current closed-loop controls as well as the system integration of the three-phase permanent-magnet synchronous motor. The control of motor and inverter is accomplished by software for cost reduction. The implementation of the 14-pole , 12-slot permanent-magnet synchronous motor with the linear relationship between the peak electromotive-force and speed is also given. The electromotive-force harmonic distortion measured is 1.03 %, which agrees with the analytic result of 0.95% and thus validates the software accuracy. A prototype of inverter for permanent-magnet synchronous motor with 100 W, 200 rpm, 5 N-m torque output is developed. Specifically, Hall-effect sensors are applied as rotor position feedback when rotor speed is lower than 50 rpm, whereas the auxiliary generator is given when rotor speed is greater than 50 rpm. The current harmonic distortion measured is 2.84 %, which justifies the analysis.

目錄 中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 符號說明 VI 圖表索引 X 第一章 緒論 1   1.1 研究動機與目的 1   1.2 文獻探討 2   1.3 系統架構與本文特色 3   1.4 本文大綱 4 第二章 永磁式同步電動機之分析及設計 5   2.1 前言. 5   2.2 小型永磁式同步電動機之設計 6     2.2.1 定子與轉子幾何結構的選擇 9     2.2.2 永磁材料及鐵心材料的選用 10     2.2.3 永磁式同步電動機之繞組接線 12   2.3 小型永磁式同步電動機之分析 17     2.3.1 永磁式同步電動機之感應電動勢分析 19     2.3.2 磁路特性分析 23     2.3.3 頓轉轉矩分析 25   2.4 小型永磁式同步電動機參數之量測 26     2.4.1 永磁式同步電動機之感應電動勢的量測 27     2.4.2 轉子等效磁通鏈 的量測 29     2.4.3 交、直軸電感的量測 30     2.4.4 永磁式同步電動機性能評估 32   2.5 結語 32 第三章 永磁式同步電動機之轉速控制策略 33   3.1 前言 33   3.2 永磁式同步電動機數學模型建立 33   3.3 轉速及位置偵測裝置 37   3.4 永磁式同步電動機之電流閉迴路控制 43   3.5 轉速及磁場角位置估測之轉速與電流閉迴路控制 45   3.6 結語 46 第四章 實體製作與實測 48   4.1 前言 48   4.2 數位信號處理器介面電路 48   4.3 電流及電壓回授電路 51     4.3.1 電流回授電路 51     4.3.2 電壓回授電路 52     4.3.3 直流鏈電壓回授電路 52   4.4 軟體規劃 54     4.4.1 主程式流程規劃 54     4.4.2 電流閉迴路控制軟體規劃 56     4.4.3 轉速及磁場角位置估測之轉速閉迴路控制軟體規劃 57   4.5 實測結果 60   4.6 結語 70 第五章 結論與建議 72   5.1 結論 72   5.2 建議 73 參考文獻 74 附錄 A 78 作者簡介 79

參考文獻
[1] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors open-circuit field”, IEEE Transactions on Magnetics, vol. 29, pp. 124 -135, 1993.
[2] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors armature-reaction field”, IEEE Transactions on Magnetics, vol. 29, pp. 136-142, 1993.
[3] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors effect of stator slotting”, IEEE Transactions on Magnetics, vol. 29, pp. 143 -151, 1993.
[4] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless DC motors magnetic field on load”, IEEE Transactions on Magnetics, vol. 29, pp. 152-158, 1993.
[5] A. B. Proca, A. Keyhani, A. El-Antably, W. Lu, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets”, IEEE Transactions on Energy Conversion, vol. 18, pp. 386-391, 2003.
[6] D. Hanselman, “Brushless permanent magnet motor design,” The Writers’ Collective, U.S.A., 2003.
[7] K. Gyu-Hong, H. Jung-Pyo and K.Gyu-Tak,“Nonlinear characteristic analysis of interior type permanent magnet synchronous motor,”International Conference IEMD 99, pp. 69-71,1999.
[8] 廖福益,小型馬達技術,全華書局,民國九十二年。
[9] 唐任遠,現代永磁電機理論與設計,機械工業出版社,北京,西元1997年。
[10] V. Bukanin, F. Dughierof, S. Lupi, V. Nemkov and P. Siega, “Simulation of multiphase induction heating systems”, Computation in Electromagnetics , Second International Conference , pp. 211-214, 1994.
[11] A. Masmoudi, A. Njeh, A. Mansouri, H. Trabelsi and A. Elantably, “Optimizing the overlap between the stator teeth of a claw pole transverse-flux permanent-magnet machine,” IEEE Transactions on Magnetics, vol. 40, pp.1573-1578, 2004.
[12] T. Wen-Bin and C. Ting-Yu, “Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets,” IEEE Transactions on Magnetics, vol. 35, pp.543-547, 1999.
[13] Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Transactions on Energy Conversion, vol. 15, pp.407-412, 2000.
[14] Z. J. Liu, C. Bi, H.C. Tan and T. S. Low, “A combined numerical and analytical approach for magnetic field analysis of permanent magnet machines,” IEEE Transactions on Magnetics, pp.1372-1375, 1995. transverse flux permanent magnet machine,” IEEE International Electric Machines and Drives Conference, pp.754-759, 2001.
[15] A. Masmoudi and A. Elantably, “A simple assessment of the cogging torque in a transverse flux permanent magnet machine,” IEEE International Electric Machines and Drives Conference, pp.754-759, 2001.
[16] W. B. Tsai and T. Y. Chang , “Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets,” IEEE Transactions on Magnetics, vol. 35, pp. 543-547,1999.
[17] H. Kim and R. D. Lorenz, “Improved current regulators for IPM machine drives using on-line parameter estimation,” Proceedings of the 2003 Industry Applications Annual Meetings, pp.86-91, 2003.
[18] E. Spooner, ”Direct coupled, permanent magnet generators for wind turbine applications.” IEE Proceedings, Electric Power Application, vol. 143, pp. 1-8, 1996.
[19] W. Wu, V. S. Ransden, T. Crawford, G. Hill, “A low-speed high-torque, direct-drive permanent magnet generator for wind turbines.” IEEE Industry Applications Conference , vol. 1, pp.147-154,2000.
[20] P. Lampola, J. Perho, “Electromagnetic analysis of a low-speed permanent-magnet wind generator.” International Conference, Opportunities and Advances in International Electric Power Generation, Industry Applications Conference , pp.55-58,1996.
[21] T. F. Chan and Lie-Tong Yan, “Analysis and performance of a surface-mounted NdFeB permanent-magnet a.c. generator.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.11-14,1997.
[22] T. F. Chan and Lie-Tong Yan, “Analysis and performance of a three-phase a.c. generator with inset permanent-magnet rotor.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.436-440,2000.
[23] Y. Honda, T. Nakamura, T. Higaki and Y. Takeda, “Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles,” Thirty-Second IAS Annual Meeting Conference, vol. 1, pp.75-82, 1997.
[24] B. J. Chalmers, “Performance of interior-type permanent-magnet alternator,” IEE Proceedings Electric Power Applications, vol. 141, pp.186-190, 1994.
[25] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a permanent magnet synchronous motor using the synergetic approach to control theory,” IEEE 35th Power Electronics Specialists Conference, vol. 5, pp.3397-3402, 2004.
[26] F. Blaschke, “The principle of field orientation as applied to the new transvector closed loop control system for rotating field machines,” Siemens Review, vol. 34, pp.217-220, 1972.
[27] B. Zhang and M. H. Pong, “Maximum torque control and vector control of permanent magnet synchronous motor,” International Conference on Power Electronics and Drive Systems, vol. 2, pp.548-552, 1997.
[28] TMS320x280x System Control and Interrupts Reference Guide, Texas Instruments Co.,2008.
[29] TMS320x280x Analog-to-Digital Converter(ADC) Module Reference Guide, Texas Instruments Co.,2005.
[30] TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide, Texas Instruments Co.,2007.
[31] 簡旭佑,“嵌入型永磁馬達的設計與分析”,逢甲大學電機工程學系碩士班碩士論文,民國九十三年。
[32] http://www.csc.com.tw/index.asp,中國鋼鐵公司。
[33] 劉昌煥著,交流電機控制,東華書局,第二版,民國九十二年
[34] C. M. Ong , Dynamic Simulation of Electric Machinery, Prentice Hall, N.J., 2003.
[35] 何世賓,“凸極式永磁式同步電動機之高效率及高速控制系統研製”,國立台灣科技大學電機研究所碩士論文,民國八十九年。
[36] 許志榮,“可控直流鏈電壓之永磁式同步電動機驅動系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十五年。
[37] TL084 Application Note, Texas Instruments Co., 1995.
[38] 張嘉煙,“雙向功率轉換之永磁式同步電動機驅動器研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
[39] 何昆哲,“以數位信號處理器為基礎之小型風力發電系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十六年。

無法下載圖示 全文公開日期 2013/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE