簡易檢索 / 詳目顯示

研究生: 張榮安
CHANG, JUNG AN
論文名稱: 運用相位調控達成光學相位陣列積體化LiDAR之波束成形
Beam Forming Optical Phase Array based LiDAR through Phase Control
指導教授: 徐世祥
Shih-Hsiang Hsu
周錫熙
Hsi-Hsir Chou
口試委員: 徐世祥
Shih-Hsiang Hsu
周錫熙
Hsi-Hsir Chou
廖顯奎
Shien-Kuei Liaw
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 光學相位陣列光達頻率調變連續波
外文關鍵詞: Optical phase array, LiDAR, FMCW
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現今探測距離技術中,使用光的LiDAR在對於機器人、無人自駕車等等都佔有一席之地。而傳統LiDAR是以光學與機械式部件來做光束的掃描,在不考慮LiDAR的高價位下,其在嚴峻的工作環境下,掃瞄速度、穩定性、體積小特性是需要顯著地提高。因此快速掃瞄與積體化的LiDAR是未來的發展方向。
本論文中,首先驗證光測距技術中的FMCW理論,設計並實驗量測以FMCW原理下的檢測距離與速度,根據光源與系統的穩定性,在1公尺內其空間深度解析度可達到1mm,其距離之絕對誤差可以達到6mm,而單純使用都卜勒之量測速度絕對誤差為0.6mm/s,而在0.5公尺內同時量測距離與速度,其距離最大誤差為18mm,其速度最大誤差為1.3mm/s。
而為了要達到可靠的掃描穩定性與積體化LiDAR,本論文從兩種角度不同的理論出發,分別為電磁波的相位陣列理論以及在光狹縫繞射的Rayleigh-Sommerfeld理論,分析並模擬驗證兩種理論的優劣勢,並使用此兩種理論作為設計與模擬的依據,設計並模擬光學相位陣列來達到波束型成的效果,其中包括耦光元件、分光元件、相移元件與發射陣列波導光柵。
最後為了控制光學相位陣列,補償在晶片上的製程誤差造成的相位偏移,調製相位則使用基因演算法來優化控制的相位參數。


In modern detection and ranging technology, Light Detection and Ranging (LiDAR) systems are used in almost every robotics and autonomous vehicles. Traditional LiDAR systems utilize free-space optics and mechanical components to steer the beam. Regardless the price, its scan rate, stability and large size still need significant improvements in harsh environment. For this reason, high scan rate and integrated LiDAR are the trends in the near future.
In this thesis, we first verify the theory of frequency-modulated continuous-wave (FMCW) by designing experiments to acquire the distance and velocity information. Under certain linearity and stability of light source, a spatial resolution of 1-mm and a range error of 6-mm will be demonstrated through the distance characterization. The velocity test also shows a velocity error of 0.6-mm/s in the range of 1 meter. For the simultaneous measurement on the distance and velocity, the distance error of 18-mm and velocity error of 1.3-mm/s will be illustrated.
In order to obtain the stability and integrated LiDAR, analysis and comparison are made between the electromagnetic wave phase array theory and Rayleigh-Sommerfeld multi-slits diffraction theory. Then the optical phase array, consisting the coupler, splitter, phase shifter and emitter array, will be designed and simulated for beam forming.
Finally we will demonstrate the phase distribution of an optical phase array using a genetic algorithm to compensate phase error from fabrication process variation.

第一章 緒論 1.1 研究背景 1.2 論文架構 第二章 FMCW LiDAR 2.1 頻率調變連續波FMCW理論介紹 2.2 Auxiliary interferometer相位補償 2.3 實驗結果 2.3.1 固定目標量測 2.3.2 都卜勒量測 2.3.3 移動目標量測 2.3.4 結論 第三章 Solid state LiDAR 3.1 光學相位陣列(Optical phase array)之理論與模擬 3.1.1 相位陣列理論 3.1.2 自由空間中的成像繞射理論 3.1.3 理論模擬與比較 3.2 光柵耦合器(Grating coupler) 3.3 分光器(Splitter) 3.3.1 MMI Coupler 3.4 相移器陣列(Phase shifter array) 3.5 發射器陣列(Emitter array)設計與模擬 3.5.1 波導光柵 3.5.2 波導間距 3.6 實驗量測結果 第四章 相位調控探討 4.1 基因演算法(Genetic algorithm)介紹 4.2 模擬與分析 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

[1] M. Himmelsbach, A. Müller, T. Luettel, and H.-J. Wünsche, “LIDAR-based 3D object perception,” Proceedings of 1st international workshop on cognition for technical systems 1, 2008.
[2] K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré and R. Baets, "Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator", Optics Letters, vol. 34, no. 9, p. 1477, 2009.
[3] M. R. Kossey, N. MacFarlane, K. G. Petrillo, C. Rizk, and A. C. Foster, "Silicon Micro/Nanophotonic Optical Phased Arrays for Beam Steering," in Advanced Photonics, OSA Technical Digest, paper IM3B.5, 2018
[4] S. Pinna, B. Song, L. A. Coldren, and J. Klamkin, "Vernier Transceiver Architecture for Side-Lobe-Free and High-Entendue LiDAR," in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper ATu3R.3, 2018
[5] M. Kossey, C. Rizk and A. Foster, "End-fire silicon optical phased array with half-wavelength spacing", APL Photonics, vol. 3, no. 1, p. 011301, 2018.
[6] K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xian, S. Feng and S. B. Yoo, "Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view", Optics Express, vol. 25, no. 17, p. 19655, 2017.
[7] A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh and M. Watts, "Integrated phased array for wide-angle beam steering", Optics Letters, vol. 39, no. 15, p. 4575, 2014.
[8] J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, "Fully integrated hybrid silicon two dimensional beam scanner", Optics Express, vol. 23, no. 5, p. 5861, 2015.
[9] T. Komljenovic, R. Helkey, L. Coldren and J. Bowers, "Sparse aperiodic arrays for optical beam forming and LIDAR", Optics Express, vol. 25, no. 3, p. 2511, 2017.
[10] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, "Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths", Optics Letters, vol. 42, no. 1, p. 21, 2016.
[11] T. Komljenovic and P. Pintus, "On-chip calibration and control of optical phased arrays", Optics Express, vol. 26, no. 3, p. 3199, 2018.
[12] D. Zhuang, L. Zhagn, X. Han, Y. Li, Y. Li, X. Liu, F. Gao, and J. Song, "Omnidirectional beam steering using aperiodic optical phased array with high error margin", Optics Express, vol. 26, no. 15, p. 19154, 2018.
[13] C. Phare, M. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy and M. Lipson, "Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View", Conference on Lasers and Electro-Optics, 2018.
[14] D. N. Hutchison, J. S., Jonathan K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, "High-resolution aliasing-free optical beam steering", Optica, vol. 3, no. 8, p. 887, 2016.
[15] C. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. Watts, "High-Performance Integrated Optical Phased Arrays for Chip-Scale Beam Steering and LiDAR", Conference on Lasers and Electro-Optics, 2018.
[16] S. Miller, C. Phare, Y. Chang, X. Ji, O. Gordillo, A. Mohanty, S. Roberts, M. Shin, B. Stern, M. Zadka, and M. Lipson, "512-Element Actively Steered Silicon Phased Array for Low-Power LIDAR", Conference on Lasers and Electro-Optics, 2018.
[17] Zhai, Yuyao, et al. "Non-mechanical beam-steer lidar system based on swept-laser source." Optical Fiber Sensors. Optical Society of America, 2018.
[18] F. Ito, X. Fan and Y. Koshikiya, "Long-Range Coherent OFDR With Light Source Phase Noise Compensation", Journal of Lightwave Technology, vol. 30, no. 8, pp. 1015-1024, 2012.
[19] J. W. Goodman, “Introduction to fourier optics” (2004, 3rd edition).
[20] M. Dakss, L. Kuhn, P. Heidrich and B. Scott, "ERRATA: GRATING COUPLER FOR EFFICIENT EXCITATION OF OPTICAL GUIDED WAVES IN THIN FILMS", Applied Physics Letters, vol. 17, no. 6, pp. 268-268, 1970.
[21] R. Waldhäusl, B. Schnabel, P. Dannberg, E. Kley, A. Bräuer and W. Karthe, "Efficient Coupling into Polymer Waveguides by Gratings", Applied Optics, vol. 36, no. 36, p. 9383, 1997.
[22] F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout and R. Baets, "Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits", IEEE Photonics Technology Letters, vol. 19, no. 23, pp. 1919-1921, 2007.

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE