簡易檢索 / 詳目顯示

研究生: 陳彥衞
Yan-Wei Chen
論文名稱: 新型效率修正轉換器設計應用於Type-C型電力傳輸控制器
Novel Efficiency Correction Converters Designed and Applied for Power Transfer Controllers of Type-C
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 鄒明璋
Ming-Chang Tsou
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 136
中文關鍵詞: 功率因數修正準諧振返馳式波谷切換
外文關鍵詞: Power Factor Correction, Quasi-Resonant, Flyback, Valley-Switching
相關次數: 點閱:432下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

USB電力傳輸( Power Delivery)透過單一電源供應器與統一化之連接埠,能滿足各種3C裝置供電需求,同時接頭的無方向性更增進使用上之便利性,改善眾多傳統3C產品充電配件之缺點。傳統電源裝置大多使用返馳式轉換器,達到體積小及成本低之效益,然而,其輸出功率隨負載的變換,導致轉換器效率常處於非最佳之狀態。因此本論文設計新型效率修正控制之準諧振返馳式電源轉換器,並且可適用於不同輸出電壓,以改善上述問題。
本論文以Mathcad計算主要元件損耗,而電路主架構為邊界導通模式升壓型功率因數修正器做前級穩壓器,使輸入直流電壓升至260V或400V,可降低導通損失;關閉功率因數修正器輸入直流電壓為163V或325V,能降低切換損失,減少電路整體損耗。假設導通損失小於切換損失時,預期關閉功率因數修正器;相反之,當導通損失遠大於切換損失時,預期開啟功率因數修正器,以此方式提高整體效率。後級準諧振返馳式轉換器,具有波谷切換特性,可有效減少開關損耗。最後實測整體系統效能,當輸出功率50W,而輸入交流電壓為230V且25%負載時,功率因數修正器關閉時的效率比開啟時提高7.4%;當輸出功率100W,而輸入交流電壓為115V且負載100%載時,功率因數修正器開啟時的效率比關閉時提升2.67%,本文均符合新式能源之星法規標準。


Power delivery of a universal serial bus (USB) can meet power supply requirements in a variety of 3C devices by a single power supply and a unified port. At the same time, the non-directional joint can increase the convenience of use and improve the shortcomings of charging accessories in many conventional computers, communications, and consumer electronics (3C) products. Most of the traditional power supply devices use the flyback converter to achieve the small size and the benefits of low cost. However, the output power with the changes in the load, resulting in converter efficiency is often in the non-optimal state. Therefore, a new type of quasi-resonant flyback power converter with efficiency correction control is designed in this thesis and can be applied for different output voltages to improve the above problems.
In this thesis, Mathcad is used to calculate the losses of main components. The circuit main structure is a boost type power factor correction device with the border conduction mode as a regulator in the front stage. The input DC voltage roses to 260V or 400V and the conduction loss can be reduced. The input DC voltage of 163V or 325V can decrease the switching loss and reduce the overall circuit loss after turning off the power factor correction device. When the conduction loss is less than the switching loss, the power factor corrector is turned off. When the conduction loss is much greater than the switching loss, the power factor correction is turned on. The overall efficiency is improved by this way. The quasi-resonant flyback converter in the rear stage with valley switching characteristics can effectively reduce the switching losses. Finally, the overall system performance is tested. When the output power is 50W and the input AC voltage is 230V with the 25% load, the efficiency of the power factor correction device which is turned off is 7.4% higher than it which is turned on. When the output power is 100W and the input AC voltage is 115V with the 100% load, the efficiency of the power factor correction device which is turned on is 2.67% higher than it which is turned off. Accordingly, the system performance entirely satisfies the new type of Energy-Star regulations.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 符號索引 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 4 1.3 系統架構之規格與特色 7 1.4 本文大綱 9 第二章 功率因數修正與控制方法 11 2.1 前言 11 2.2 功率因數與總諧波失真 12 2.3 主動式功率因數修正器之電路架構 18 2.4 主動式升壓型功率因數修正器之動作原理 19 2.5 主動式功率因數修正電路之控制方法 23 2.5.1 連續導通模式 23 2.5.2 不連續導通模式 30 2.5.3 邊界導通模式 33 第三章 準諧振返馳式轉換器之動作原理 40 3.1 前言 40 3.2 返馳式轉換器工作原理 41 3.2.1 連續導通模式 42 3.2.2 不連續導通模式 47 3.2.3 邊界連續導通模式 50 3.3 柔性切換 52 3.4 準諧振返馳式轉換器電路之動作原理 55 第四章 功率因數修正器控制之最佳化設計 64 4.1 前言 64 4.2 本文控制IC介紹 65 4.3 電路主要元件之參數 76 4.4 功率因數修正器控制之損耗分析 80 4.4.1 損耗來源與公式推導 80 4.4.2 功率因數修正器控制之最佳化與分析 85 第五章 系統整合之實測結果與討論 90 5.1 前言 90 5.2 系統整合之波形與效能實測結果 90 5.2.1 功率因數修正量測波形 91 5.2.2 關閉功率因數修正量測波形 97 5.2.3 波谷切換量測波形 102 5.2.4 效率與功率因數實測結果統計 107 5.3 實測結果與損耗分析之比較 123 5.4 原型電路實體圖 126 第六章 結論與未來展望 127 6.1 結論 127 6.2 未來展望 129 參考文獻 132

[1] Fan He, “USB Port and Power Delivery: An Overview of USB Port Interoperabiliy,” Product Compliance Engineering (ISPCE), 2015.
[2] USB Implementers Forum: http://www.usb.org/home
[3] “ENERGY STAR Program Requirements for External Power Supplies” Version 1.1, Energy Star, Mar. 2006.
[4] Limits for Harmonic Current Emissions, IEC 61000-3-2 Standards, 2005.
[5] “Power factor correction (PFC) handbook, Rev. 5,” ON Semiconductor, 2014.
[6] L. Zheren and K. M. Smedley, “A Family of Continuous Conduction Mode Power Factor Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
[7] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 1856-1865, 2011.
[8] L. Huber, B. T. Irving, and M. M. Jovanovic, “Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 24, pp. 339-347, 2009.
[9] R. Redl, and B. P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors,” IEEE Applied Power Electronics Conference and Exposition, pp. 576-583, 1994.
[10] W. Cheng, J. Song, H. Li and Y. Guo, “Time-Varying Compensation for Peak Current-Controlled PFC Boost Converter,” IEEE Transactions on Power Electronics, vol. 30, pp. 3431-3437, 2015.
[11] H. J. Kim, G. S. Seo, and B. H. Cho, “A Simple Average Current Control With On-Time Doubler for Multiphase CCM PFC Converter,” IEEE Transactions on Power Electronics, vol. 30, pp. 1683-1693, 2015.
[12] Q. Ji, X. Ruan, and L. Xie, “Conducted EMI Spectra of Average-Current-Controlled Boost PFC Converters Operating in Both CCM and DCM,” IEEE Transactions on Industrial Electronics, vol. 62, pp. 2184-2194, 2015.
[13] P. S. Ninkovic, “A Novel Constant-Frequency Hysteresis Current Control of PFC Converters,” IEEE International Symposium on Industrial Electronics, pp. 1059-1064, 2002.
[14] F. Wu, F. Feng, and L. Luo, “Sampling Period Online Adjusting-Based Hysteresis Current Control Without Band With Constant Switching Frequency,” IEEE Transactions on Industrial Electronics, vol. 62, pp. 270-277, 2015.
[15] G. C. Hsieh, J. F. Tsai, and M. F. Lai, “Design of power factor corrector for the off-line isolated buck/boost converter by a voltage-follower technique,” IEEE Transactions on Industrial Electronics, Nov. 1993.
[16] A. Bianco, C. Adragna, and G. Scappatura, “Enhanced constant-on-time control for DCM/CCM boundary boost PFC pre-regulators: Implementation and performance evaluation,” Applied Power Electronics Conference and Exposition (APEC), pp. 69-75, Mar. 2014.
[17] IEC 1000-3-2, “Electromagnetic compatibility (EMC), Part 3: Limits Section 2: Limits for harmonic currentemissions,” 1995.
[18] F. Cau, J. Liu, and Y. Zhang, “A switching strategy of dead-time elimination for pulse width modulation converters,” Future Energy Electronics Conference (IFEEC), Nov. 2015.
[19] F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,” Industrial Electronics Society, vol. 3, pp. 509-521, 1988.
[20] A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Transactions on Power Electronics, vol. 8, pp. 423-430, 1993.
[21] R. Oruganti, and T. C. How, “Resonant-tank control of parallel resonant converter,” IEEE Transactions on Power Electronics, vol. 8, pp. 127-134, 1993.
[22] K. H. Liu, R. Oruganti, and F. C. Y. Lee, “Quasi-Resonant Converters-Topologies and Characteristics,” IEEE Transactions on Power Electronics, vol. PE-2, pp.62-71, 1987.
[23] R. J. Wai, C. Y. Lin, and L. W. Liu, “Voltage-clamped forward quasi-resonant converter with soft switching and reduced switch stress,” IEE Proceedings Electric Power Applications, vol. 152, pp. 558-564, 2005.
[24] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Transactions on Power Electronics, vol. 11, pp. 162-169, 1996.
[25] H. Chung, S. Y. R. Hui, and W. H. Wang, “An isolated ZVS/ZCS flyback converter using the leakage inductance of the coupled inductor,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 679-682, 1998.
[26] C. A. Gallo, F. L. Tofoli, and J. A. C. Pinto, “Two-Stage Isolated Switch-Mode Power Supply With High Efficiency and High Input Power Factor,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 3754-3766, 2010.
[27] Y. L. Chen, and Y. M. Chen, “Line Current Distortion Compensation for DCM/CRM Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 31, pp. 2026-2038, 2016.
[28] C. Y. Inaba, Y. Konishi, and M. Nakaoka, “High-frequency flyback-type soft-switching PWM DC-DC power converter with energy recovery transformer and auxiliary passive lossless snubbers,” IEE Proceedings Electric Power Applications, vol. 151, pp. 32-37, 2004.
[29] J. Park, Y. J. Moon, and M. G. Jeong, “Quasi-Resonant (QR) Controller With Adaptive Switching Frequency Reduction Scheme for Flyback Converter,” IEEE Transactions on Industrial Electronics, vol. 63, pp. 3571-3581, 2016.
[30] M. M. A. Aziz, E. E.-D. A. El-Zahab, A. M. Ibrahim, and A. F. Zobaa, “Effect of Connecting Shunt Capacitor on Nonlinear Load Terminals,” IEEE Transactions on Power Delivery, vol. 18, pp. 1450-1454, 2003.
[31] 宋自恆、林慶仁,「功率因數修正電路之原理與常用元件規格」,新電子科技雜誌,第217 期,頁數:1-15,2004年4月。
[32] D. W. Hart and S. Y. Ou, Power Electronics, Annotated ed.: McGraw-Hill, 2011.
[33] H. Wei, and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Southeastcon '98. Proceedings. IEEE, pp.348-353, 1998.
[34] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書出版,2008。
[35] L. Rossetto, G. Spiazzi, and P. Tenti, “Control Techniques for Power Factor Correction Converter,” In Proc. PEMC, pp. 1310-1318, Sept 1994.
[36] 吳義利,切換式電源轉換器 原理與實用設計技術 (實例設計導向),2 ed.: 文笙書局,2015。
[37] R. L. Steigerwald, “A review of soft-switching techniques in high performance DC power supplies,” IEEE IECON 21st International Conference, vol. 1, pp.1-7, Nov. 1995.
[38] G. C. Huang, T. J. Liang, and K. H. Chen, “Losses analysis and low standby losses quasi-resonant flyback converter design,” IEEE International Symposium on Circuits and Systems, pp. 217-220, 2012.
[39] K. H. Chen, and T. J. Liang, “Design of Quasi-resonant flyback converter control IC with DCM and CCM operation,” Power Electronics Conference, pp. 2750-2753, 2014.
[40] Leadtrend Technology Corporation, LD77790 Datasheet, Rev. 05, Jun. 2015.
[41] C. Fiorentino, Z. Hu, and Y. F. Liu, “Improving the light load efficiency and THD of PFC converters using a Line Cycle Skipping method,” Control and Modeling for Power Electronics, 2013.
[42] K. Y. Lee, and Y. S. Lai, “Novel circuit design for two-stage AC/DC converter to meet standby power regulations,” IET Power Electronics, vol. 2, pp. 625-634, 2009.
[43] K. I. Hwu, Y. T. Yau, and L. L. Lee, “Powering LED Using High-Efficiency SR Flyback Converter,” IEEE Transactions on Industry Applications, vol. 47, pp. 376-386, 2011.
[44] 鄒明璋,「抑制電能轉換器傳導EMI之新型抖頻技術」,博士, 電機工程系,國立臺灣科技大學,台北市,2015。
[45] 郭明豪,「準諧振返馳式轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2014。
[46] 劉開平,「具改善待機效率之LLC諧振轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2014。
[47] 胡宏新,「半橋LLC諧振轉換器效率改善與系統研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2015。
[48] 吳律凱,「具同步整流功能之返馳式轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2015。
[49] 蔡右平,「高效率可調光之返馳式LED驅動器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2016。
[50] 蔡宇宏,「準諧振控制電路及初次側調整控制器在充電器應用之研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2017。

QR CODE