簡易檢索 / 詳目顯示

研究生: 吳承翰
Cheng-Han Wu
論文名稱: 純銅粉末及其冷噴塗塗層性質之研究
Study on the formation of cold sprayed coatings prepared by different copper powder
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
Yao-Hsuan Tseng
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 冷噴塗粒徑分佈表面形貌塗層附著力
外文關鍵詞: Cold Spray, Copper, Particle size distribution, Powder shape, Coating adhesion
相關次數: 點閱:290下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於冷噴塗系統能夠以單一製程,在各式基板上製備高純度、結合力佳,且具備優良導電性之緻密銅塗層,在電子業領域需求高漲的銅箔應用中備受期待,藉由噴塗製程的特性可以在製程效率、成本控管及環境互動中都取得相應的優勢;而銅箔應用中多項關鍵的性質取向皆與冷噴塗系統中粉末的選擇有密切的關聯,因此本研究將採用不同特性的銅粉探討高壓冷噴塗銅塗層之形成機制及性能,以驗證冷噴塗系統於電子產業銅箔應用中的可能性。本研究使用噴塗溫度為800℃與5 Mpa氮氣壓力之固定冷噴塗製程參數,在6061鋁合金基板上,配合具不同表面形貌及粒徑分佈特性之粉末製備銅塗層,並進行微觀結構、材料組成及表面粗糙度等性質分析;近一步探討冷噴塗中粉末的特性與塗層結構的關係,再經由拉開法附著力試驗量化塗層沉積的優劣性質,說明粉末特性與塗層附著力間之趨勢變化,建構出高壓冷噴塗塗層成形機制。在研究中發現,在高壓冷噴塗製程中,使用平均粒徑24.8 µm之氣霧法球形銅粉,可以建構出具備片狀均勻粉末堆疊結構之塗層,並產生研究中最高的81.1 Mpa塗層附著力;而使用電解法製備的樹枝狀粉末,能在相同噴塗強度下擁有更緻密的塗層,但由於其不規則形狀分散了粉末衝擊力,故塗層附著力皆低於球狀粉末,需要更高的能量才能產生明顯的塑性變形,並與基材間建立良好的結合,但隨著粒徑上升至36.9 µm,同樣也能達到66.1 Mpa的塗層附著力,證明冷噴塗製程的各項塗層性質可控性高,在銅箔應用中能夠依照所需要求進行調整且具備高度發展之潛力。


Cold spray systems are suitable for producing copper coatings with high purity, high bond strength and excellent electrical conductivity on various types of substrates in a single process. Therefore, cold spraying is highly expected for copper foil applications in the electronics industry. The characteristics of the spraying process provide advantages in process efficiency, cost control and environmental protection. In addition, many key properties of copper foil applications are closely related to the choice of powder in the cold spray system. Therefore, this study will discuss the formation mechanism and performance of cold sprayed copper coatings by using different powders to test the possibilities of cold spray systems in copper foil applications. In this study, a fixed cold spray process with a working temperature of 800°C and a nitrogen pressure of 5 MPa was used to prepare copper coatings on 6061 aluminum alloy substrates. The powder is selected with different shapes and particle size distributions. The microstructure, material composition and surface roughness were analyzed to investigate the relationship between powder properties and coating structure in cold spraying. Finally, a pull-off adhesion test was performed to quantify the coating adhesion and construct a cold spray coating forming mechanism. It was found that the spherical copper powder with particle size of 24.8 µm could be used in high-pressure cold spray coating process to establish a coating with lamellar stack structure and produce the highest coating adhesion of 81.1 Mpa in the study. Dendritic powder provides a denser coating at the same spray strength, while irregular shape disperses the impact of it, so the coating adhesion is lower than that of spherical powder. Dendritic powder requires higher energy to produce significant plastic deformation and well bonding. The coating adhesion also reached to 66.1Mpa while particle size is 36.9 µm. Cold spray process shows a high degree of controllability in coating properties, and therefore has a great potential for copper foil applications.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 第2章 文獻回顧 3 2.1 冷噴塗系統之發展背景 3 2.2 冷噴塗系統之製程原理 4 2.3 製程參數與材料選擇對塗層性質之影響 8 2.3.1 臨界速度與顆粒速度 8 2.3.2 噴塗氣體與工作溫度 12 2.3.3 噴塗粉末之氧化程度 15 2.3.4 噴塗粉末之粒徑尺寸與形貌 17 2.3.5 塗層之建構與粉末間之結合 20 2.4 塗層性質評估方式 22 2.4.1 噴塗塗層表面之平坦度 22 2.4.2 塗層與基材間之附著力 23 2.5 文獻回顧與實驗動機總結 25 第3章 實驗方法與設計 26 3.1 實驗流程 26 3.2 實驗參數 27 3.3 實驗分析樣品製備步驟 29 3.3.1 粉末之微觀結構試驗樣品製備 29 3.3.2 高壓冷噴塗塗層之製備 29 3.3.3 塗層XRD分析樣品製備 30 3.3.4 塗層截面之微觀結構試驗樣品製備 30 3.3.5 拉開法附著力試驗樣品製備 31 3.4 實驗分析及儀器原理 32 3.4.1 高壓冷噴塗設備 32 3.4.2 雷射粒徑分析儀 33 3.4.3 光學金相顯微鏡 34 3.4.4 場發射掃描式電子顯微鏡 35 3.4.5 能量色散X射線光譜儀 36 3.4.6 X光繞射儀 37 3.4.7 表面粗糙度儀 38 3.4.8 萬能材料試驗機 39 第4章 結果與討論 40 4.1 銅粉之表面形貌與粒徑分佈分析 40 4.2 塗層截面之微觀結構分析 44 4.3 銅粉及塗層之成份組成分析 48 4.4 表面粗糙度與沉積效率 51 4.5 粉末與塗層附著力強度之關係 54 4.6 塗層成形機制 58 第5章 結論 61 5.1 研究結果總結 61 5.2 未來展望 63 參考文獻 64 圖目錄 圖 2 1. 冷噴塗系統示意圖 4 圖 2 2. 德拉瓦噴嘴示意圖 5 圖 2 3. LPCS系統之示意圖 6 圖 2 4. 冷噴塗試驗的實驗參數紀錄 9 圖 2 5. 在固定撞擊溫度下顆粒之衝擊速度、沉積效率和衝擊效應間之關係 10 圖 2 6. 不同粒徑之Al-Si粉末沉積在碳鋼基材上之臨界速度和最大速度估值 11 圖 2 7. 噴塗時之沉積效率與(a)噴塗氣體溫度及(b)平均顆粒速度的關係 13 圖 2 8. 具相近顆粒速度時沉積效率與噴塗氣體溫度的關係 13 圖 2 9. 銅粉以不同溫度噴塗於316L不鏽鋼基材之表面及截面微觀結構照片(a),(b) 873 K (c),(d) 673 K (e),(f) 473 K (g),(h) 373 K 14 圖 2 10. 冷噴塗中射流現象的形成示意圖:第一階段-衝擊波的形成,第二階段-衝擊從邊緣分離,第三階段-在壓力釋放的基礎上形成射流 15 圖 2 11. 粉末氧含量對不同噴塗材料臨界速度的影響 16 圖 2 12. 伴隨著表面氧化膜的破碎、擠壓和噴射的冷噴塗粒子結合過程示意圖 16 圖 2 13. 使用在(a)空氣中1小時 (b)空氣中6小時 (c)真空中1小時 (d)真空中6小時 下預處理的銅粉之沉積效率變化 17 圖 2 14. 冷噴塗試驗中常見的粒徑尺寸選擇範圍 18 圖 2 15. 球狀與複數顆粒組合成之粉末在不同衝擊速度下的衝擊行為:(a)及(d) 300 ms−1,(b)及(e) 400 ms−1,(c)及(f) 500 ms−1 19 圖 2 16. FESEM下低壓冷噴塗銅塗層的斷裂表面之(a)巨觀及(b)放大倍率之影像 20 圖 2 17. 冷噴塗製程中粉末在接觸基板後隨時間的變形 21 圖 2 18. 冷噴塗塗層建構的四個階段 21 圖 2 19. 表面最大高度粗糙度(Rz)之示意圖 22 圖 2 20. 拉開法附著力試驗之配置示意圖 23 圖 2 21. 拉開法附著力試驗中常見的斷裂模式 24 圖 3 1. 實驗流程圖 26 圖 3 2. (a) 5種以罐裝密封的紅銅粉末樣品 (b)銅粉微觀結構分析之樣品 29 圖 3 3. 冷噴塗之銅塗層樣品製備 29 圖 3 4. 冷噴塗銅塗層拋光完成之XRD分析樣品 30 圖 3 5. 以熱鑲埋製備之塗層微觀結構樣品 31 圖 3 6. 高壓冷噴塗系統 32 圖 3 7. 雷射粒徑分析儀 33 圖 3 8. 直立式光學金相顯微鏡 34 圖 3 9. 場發射掃描式電子顯微鏡 35 圖 3 10. 能量色散X射線光譜儀之原理示意圖 36 圖 3 11. X光繞射儀 37 圖 3 12. 表面粗糙度儀 38 圖 3 13. 萬能材料試驗機 39 圖 4 1. 銅粉之SEM表面形貌:(a) A1 (b) A2 (c) E1 (d) E2 (e) E3 40 圖 4 2. 氣霧法製備的紅銅粉末樣品之粒徑分佈數據:(a) A1 (b) A2 41 圖 4 3. 電解法製備的紅銅粉末樣品之粒徑分佈數據:(a) E1 (b) E2 (c) E3 42 圖 4 4. 於OM下觀察塗層截面腐蝕後之粉末堆疊差異:(a) A1-S (b) A2-S (c) E1-S 44 圖 4 5. 在OM下觀察塗層截面腐蝕後之粉末變形程度:(a) A2-S (b) E1-S 45 圖 4 6. 在OM下觀察塗層基板間的變形狀況:(a) A2-S (b) E1-S 46 圖 4 7. 塗層E1-M之OM截面圖展示的分層現象:(a)未腐蝕 (b)腐蝕 46 圖 4 8. 分層塗層E1-M之EDS與Mapping成份組成分析 47 圖 4 9. 噴塗粉末樣品之XRD成份組成分析圖 48 圖 4 10. E1粉末樣品之EDS分析數據 49 圖 4 11. 噴塗塗層樣品之XRD成份組成分析圖:(a)單層塗層 (b)多層塗層 50 圖 4 12. 依噴塗粉末平均粒徑尺寸排列之塗層表面最大粗糙度比較表 51 圖 4 13. 含有高表面高低差之A2-M塗層OM截面圖 52 圖 4 14. 塗層附著力試柱斷裂面由噴塗面到膠面的趨勢變化 55 圖 4 15. 塗層附著力比較表 56 圖 4 16. 電解法E3粉末製備的拉開法附著力試驗試柱之斷面 (a) E3-S (b) E3-M 56 圖 4 17. 含有層間破裂面之E1-M附著力試柱 57 圖 4 18. 冷噴塗製程之粉末沉積流程圖 (a)粉末因粒徑差異而受到不同程度的加速及軟化效果 (b)粉末衝擊基板時將動能轉化成熱能,軟化並沖蝕基材表面帶走部分的氧化物 (c)粉末進行塑性變形後以火山口的形狀沉積於基材上 58 圖 4 19. 具氧化層之金屬粉末,用於冷噴塗之成形示意圖:(a)球形粉末 (b)樹枝狀粉末 59 圖 4 20. 粒徑分佈造成之塗層堆積差異:(a)粒徑分佈集中之均勻塗層 (b)粒徑分佈分散產生的含大孔隙之塗層 60   表目錄 表 2 1. 空氣、氮氣及氦氣之比熱(γ)和氣體常數(Rs)表 12 表 3 1. 冷噴塗製程參數設置表 27 表 3 2. 實驗粉末及噴塗樣品編號表 27 表 3 3. 拉開法附著力試驗參數設置表 39 表 4 1. 粉末樣品之粒徑尺寸表 43 表 4 2. 平均單層塗層厚度比較表 53 表 5 1. 不同預熱條件下與塗層附著力之比較表 63

[1] N. Huonnic, M. Abdelghani, P. Mertiny, A. Mcdonald, Deposition and characterization of flame-sprayed aluminum on cured glass and basalt fiber-reinforced epoxy tubes, Surface and Coatings Technology, 205 (2010) 867-873.
[2] F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surface and Coatings Technology, 203 (2009) 2954-2960.
[3] J. Voyer, P. Schulz, M. Schreiber, Electrically conductive flame sprayed aluminum coatings on textile substrates, Journal of Thermal Spray Technology, 17 (2008) 818-823.
[4] R.C. Dykhuizen, M.F. Smith, Gas dynamic principles of cold spray, Journal of Thermal Spray Technology, 7 (1998) 205-212.
[5] W.Y. Li, C.J. Li, H.L. Liao, Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings, Applied Surface Science, 256 (2010) 4953-4958.
[6] K.H. Ko, J.O. Choi, H. Lee, Pretreatment effect of Cu feedstock on cold-sprayed coatings, Journal of Materials Processing Technology, 214 (2014) 1530-1535.
[7] X.T. Luo, Y. Ge, Y.C. Xie, Y.K. Wei, R.Z. Huang, N.S. Ma, C.S. Ramachandran, C.J. Li, Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content, Journal of Materials Science & Technology, 67 (2021) 105-115.
[8] J. Tam, B.S. Yu, W.W. Li, D. Poirier, J.G. Legoux, J.D. Giallonardo, J. Howe, U. Erb, The effect of annealing on trapped copper oxides in particle-particle interfaces of cold-sprayed Cu coatings, Scripta Materialia, 208 (2022).
[9] P. Fallah, S. Rajagopalan, A. McDonald, S. Yue, Development of hybrid metallic coatings on carbon fiber-reinforced polymers (CFRPs) by cold spray deposition of copper-assisted copper electroplating process, Surface and Coatings Technology, 400 (2020) 126231.
[10] H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, P. Vuoristo, High pressure cold sprayed (HPCS) and low pressure cold sprayed (LPCS) coatings prepared from OFHC Cu feedstock: Overview from powder characteristics to coating properties, Journal of Thermal Spray Technology, 21 (2012) 1065-1075.
[11] M.R. Rokni, P. Feng, C.A. Widener, S.R. Nutt, Depositing Al-based metallic coatings onto polymer substrates by cold spray, Journal of Thermal Spray Technology, 28 (2019) 1699-1708.
[12] R. Lupoi, W. O'Neill, Deposition of metallic coatings on polymer surfaces using cold spray, Surface and Coatings Technology, 205 (2010) 2167-2173.
[13] A.S. Perna, A. Viscusi, A. Astarita, L. Boccarusso, L. Carrino, M. Durante, R. Sansone, Manufacturing of a metal matrix composite coating on a polymer matrix composite through cold gas dynamic spray technique, Journal of Materials Engineering and Performance, 28 (2019) 3211-3219.
[14] F. Rubino, F. Tucci, V. Esperto, A.S. Perna, A. Astarita, P. Carlone, A. Squillace, Metallization of fiber reinforced composite by surface functionalization and cold spray deposition, Procedia Manufacturing, 47 (2020) 1084-1088.
[15] A. Astarita, L. Boccarusso, M. Durante, A. Viscusi, R. Sansone, L. Carrino, Study of the production of a metallic coating on natural fiber composite through the cold spray technique, Journal of Materials Engineering and Performance, 27 (2018) 739-750.
[16] N. Espallargas, Future development of thermal spray coatings: Types, designs, manufacture and applications, Elsevier, 2015.
[17] R.N. Raoelison, Y. Xie, T. Sapanathan, M.P. Planche, R. Kromer, S. Costil, C. Langlade, Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date, Additive Manufacturing, 19 (2018) 134-159.
[18] L. Cui, Cold gas dynamic spray process: CFD modeling and simulation of high-speed(supersonic) two-phase (gas-particle) aerodynamic flow behavior, Master's thesis, University of New Brunswick, 2020
[19] M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Materials & Design, 25 (2004) 681-688.
[20] H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying, Acta Materialia, 51 (2003) 4379-4394.
[21] T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, T. Klassen, From particle acceleration to impact and bonding in cold spraying, Journal of Thermal Spray Technology, 18 (2009) 794-808.
[22] H. Singh, T.S. Sidhu, S.B.S. Kalsi, J. Karthikeyan, Development of cold spray from innovation to emerging future coating technology, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35 (2013) 231-245.
[23] X.J. Ning, J.H. Kim, H.J. Kim, C. Lee, Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings, Applied Surface Science, 255 (2009) 3933-3939.
[24] E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, Investigation of Al-Al2O3 cold spray coating formation and properties, Journal of Thermal Spray Technology, 16 (2007) 661-668.
[25] H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, K.H. Ko, Cold spray of SiC and Al2O3 with soft metal incorporation: A technical contribution, Journal of Thermal Spray Technology, 13 (2004) 184-189.
[26] R.G. Maev, V. Leshchynsky, Air gas dynamic spraying of powder mixtures: Theory and application, Journal of Thermal Spray Technology, 15 (2006) 198-205.
[27] C.A. Widener, O.C. Ozdemir, M. Carter, Structural repair using cold spray technology for enhanced sustainability of high value assets, Procedia Manufacturing, 21 (2018) 361-368.
[28] S. Yin, M. Meyer, W. Li, H. Liao, R. Lupoi, Gas flow, particle acceleration, and heat transfer in cold spray: A review, Journal of Thermal Spray Technology, 25 (2016) 874-896.
[29] L. Venkatesh, N.M. Chavan, G. Sundararajan, The influence of powder particle velocity and microstructure on the properties of cold sprayed copper coatings, Journal of Thermal Spray Technology, 20 (2011) 1009-1021.
[30] V.K. Champagne, The cold spray materials deposition process: fundamentals and applications, 2007.
[31] H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gartner, T. Klassen, H. Kreye, On parameter selection in cold spraying, Journal of Thermal Spray Technology, 20 (2011) 1161-1176.
[32] M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process, Applied Surface Science, 219 (2003) 211-227.
[33] T. Schmidt, F. Gartner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Materialia, 54 (2006) 729-742.
[34] M.V. Vidaller, A. List, F. Gaertner, T. Klassen, S. Dosta, J.M. Guilemany, Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates, Journal of Thermal Spray Technology, 24 (2015) 644-658.
[35] J.W. Wu, H.Y. Fang, S. Yoon, C. Lee, H. Kim, Critical velocities for high speed particle deposition in kinetic spraying, Materials Transactions, 47 (2006) 1723-1727.
[36] J.-G. Legoux, E. Irissou, S. Desaulniers, J. Bobyn, B. Harvey, W. Wong, E. Gagnon, S. Yue, Characterization and performance evaluation of a helium recovery system designed for cold spraying, NRC Publ Arch (NPArC), (2010) 1-22.
[37] W. Wong, E. Irissou, A.N. Ryabinin, J.G. Legoux, S. Yue, Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings, Journal of Thermal Spray Technology, 20 (2011) 213-226.
[38] J. Pattison, S. Celotto, R. Morgan, M. Bray, W. O'Neill, Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication, International Journal of Machine Tools & Manufacture, 47 (2007) 627-634.
[39] Z.Y. Liu, H.Z. Wang, M.J.R. Hache, X. Chu, E. Irissou, Y. Zou, Prediction of heterogeneous microstructural evolution in cold sprayed copper coatings using local Zener-Hollomon parameter and strain, Acta Materialia, 193 (2020) 191-201.
[40] P.L. Fauchais, J.V. Heberlein, M.I. Boulos, Thermal spray fundamentals: from powder to part, Springer Science & Business Media, 2014.
[41] H.-J. Kim, C.-H. Lee, S.-Y. Hwang, Superhard nano WC–12% Co coating by cold spray deposition, Materials Science and Engineering: A, 391 (2005) 243-248.
[42] S. Yin, X.F. Wang, X.K. Suo, H.L. Liao, Z.W. Guo, W.Y. Li, C. Coddet, Deposition behavior of thermally softened copper particles in cold spraying, Acta Materialia, 61 (2013) 5105-5118.
[43] M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, C.A. Schuh, Adiabatic shear instability is not necessary for adhesion in cold spray, Acta Materialia, 158 (2018) 430-439.
[44] K. Kang, S. Yoon, Y. Ji, C. Lee, Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 486 (2008) 300-307.
[45] M. Fukumoto, H. Terada, M. Mashiko, K. Sato, M. Yamada, E. Yamaguchi, Deposition of Copper Fine Particle by Cold Spray Process, Materials Transactions, 50 (2009) 1482-1488.
[46] A. Ganesan, J. Affi, M. Yamada, M. Fukumoto, Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate, Surface & Coatings Technology, 207 (2012) 262-269.
[47] S. Kumar, G. Bae, K. Kang, S. Yoon, C. Lee, Effect of powder state on the deposition behaviour and coating development in kinetic spray process, Journal of Physics D: Applied Physics, 42 (2009) 075305.
[48] X.T. Luo, Y.J. Li, C.J. Li, A comparison of cold spray deposition behavior between gas atomized and dendritic porous electrolytic Ni powders under the same spray conditions, Materials Letters, 163 (2016) 58-60.
[49] M. Winnicki, A. Malachowska, A. Baszczuk, M. Rutkowska-Gorczyca, D. Kukla, M. Lachowicz, A. Ambroziak, Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying, Surface & Coatings Technology, 318 (2017) 90-98.
[50] X.T. Luo, Y.J. Li, C.X. Li, G.J. Yang, C.J. Li, Effect of spray conditions on deposition behavior and microstructure of cold sprayed Ni coatings sprayed with a porous electrolytic Ni powder, Surface & Coatings Technology, 289 (2016) 85-93.
[51] H. Koivuluoto, P. Vuoristo, Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process, Journal of Thermal Spray Technology, 19 (2010) 1081-1092.
[52] T.H. Van Steenkiste, J.R. Smith, R.E. Teets, Aluminum coatings via kinetic spray with relatively large powder particles, Surface & Coatings Technology, 154 (2002) 237-252.
[53] R. Varavallo, M.D. Manfrinato, L.S. Rossino, O. Maluf, F. Camargo, Adhesion of thermally sprayed metallic coating, Journal of ASTM International, 9 (2012) 1-11.
[54] ASTM C633-79, Standard Test Method for Adhesion or Cohesion Strength of Thermal-Spray Coatings, ASTM International, West Conshohocken, PA, 1999

QR CODE