簡易檢索 / 詳目顯示

研究生: 呂修宏
Xiu-Hong Lu
論文名稱: 高長比1.0~1.5鋼筋混凝土低矮型剪力牆之完整側力位移曲線預測研究
Lateral Load Displacement Curves of Low-Rise Reinforced Concrete Shear Walls With Aspect Ratios of 1.0 to 1.5
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
廖文正
Wen-Cheng Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 鋼筋混凝土低矮型剪力牆側力位移曲線剪力變形應變穿透剪力滑移
外文關鍵詞: reinforced concrete, low-rise, shear wall, lateral load displacement curve, shear deformation, strain penetration, sliding
相關次數: 點閱:196下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋼筋混凝土剪力牆具高側向勁度和高強度的特性,藉此控制結構位移,是有效地抵抗地震力之主要構件,因此在耐震設計和耐震補強中廣泛應用,然而,高側向勁度的特性也致使牆在震後常是結構中破壞嚴重的部分,故了解其力量-變形關係,方能掌握結構耐震性能評估之準確性。
本研究蒐集13座高長比介於1.0至1.5之間的低矮型剪力牆測試結果,所有試體測試方式皆在無軸力下承受側向反復載重,且試體外部變形一致由光學儀器量測。剪力牆試體總變形量,藉各別計算之變形分量加總而得,其中分為牆體撓曲變形 (Flexural Deformation)、牆體剪力變形 (Shear Deformation)、應變穿透或稱主筋滑移變形 (Strain Penetration or Slip Deformation)、以及牆底剪力滑移變形 (Sliding Deformation);同樣地,依變形分量各別進行參數分析,發展主筋降伏前之勁度模型。
本研究建議適用於低矮型剪力牆的四線性側力-位移曲線,包括剪力開裂點、降伏點、最大強度點、以及極限位移點,經與試驗結果比對,在降伏點之位移有合理之預測結果。提供之方法可供耐震性能評估使用,期望研究成果能應用於實際結構設計,供工程師在結構設計上參考應用。


Reinforced concrete shear walls have the characteristics of high lateral stiffness and high strength to control the structural displacement, which is the main component to effectively resist the seismic force, and therefore are commonly used in seismic design and seismic retrofitting. However, the characteristics of high lateral stiffness also result in the wall often being the part of the structure that is severely damaged after an earthquake. Therefore, it is important to realize the force-displacement relationship in order to understand the accuracy of the assessment of the seismic performance of the structure.
This study collected test results from 13 low-rise shear wall specimens with height-to-length ratios ranging from 1.0 to 1.5. All specimens were subjected to lateral cyclic loading without axial load, and the external deformations were measured using optical instruments. The total deformation of the shear wall specimens was obtained by summing up the individual deformation components, including flexural deformation, shear deformation, slip deformation, and sliding deformation. Likewise, parameter analysis was conducted for each deformation component to develop a model of the stiffness of the longitudinal reinforcement before it yielded.
The force-displacement curve was proposed for low-rise shear walls, including shear cracking point, yielding point, peak strength point, and ultimate displacement point. After comparing with the test results, the displacements at the yield point are reasonably predicted. In addition to the seismic performance evaluation, it is expected that the research results can be applied to the actual structural design for engineers' reference in structural design.

摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究方法 2 1.4 研究內容架構 2 第2章 文獻回顧 3 2.1 低矮剪力牆強度 3 2.1.1 ACI 318-19 3 2.1.2 Barda等學者 (1977) 4 2.1.3 Wood (1990) 6 2.1.4 Gulec與Whittaker (2011) 9 2.1.5 Hwang等學者 (2017) 10 2.2 等效勁度 12 2.2.1 Li與Xiang (2001) 12 2.2.2 現行規範 15 2.3 側力位移曲線 16 2.3.1 現行規範 16 2.3.2 Carrillo與Alcocer (2012) 17 2.3.2.1 強度分析模型 18 2.3.2.2 位移分析模型 19 2.3.3 Weng等學者 (2017) 21 2.3.3.1 開裂點 22 2.3.3.2 強度點 24 2.3.3.3 崩塌點 26 第3章 剪力牆試體簡述 27 3.1 試體斷面配置與材料性質 28 3.2 試驗結果摘要 32 3.2.1 力量分析 32 3.2.2 變形量分析 35 3.2.2.1 撓曲變形計算 37 3.2.2.2 應變法剪力變形計算 41 3.2.2.3 公式法剪力變形計算 45 3.2.2.4 變形分量計算比較 46 3.2.2.5 元素尺寸敏感度分析 47 3.3 試體變形分量 50 第4章 低矮型剪力牆側力位移曲線預測模型之建立 57 4.1 剪力開裂點 58 4.2 降伏點 64 4.2.1 牆體撓曲變形分量勁度 64 4.2.2 牆體剪力變形分量勁度 65 4.2.3 牆底應變穿透轉角變形分量 72 4.2.4 牆底剪力滑移變形分量勁度 74 4.3 最大強度點 77 4.4 極限位移點 78 4.5 結果討論 79 4.5.1 預測模型之驗證 79 4.5.2 比較過去文獻 81 第5章 結論與建議 85 5.1 結論 85 5.1.1 分析結果 85 5.1.2 比對結果 86 5.2 建議 86 參考文獻 87 附錄A 試體正向第一加載週期之完整力量-變形曲線 90 附錄B 半無限彈性地梁自由端受垂直集中載重之最大變形量 94

ACI 318 (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute, Farmington Hills, MI., 519 pp.
ACI 318 (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI., 623 pp.
ASCE 41 (2017). Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, VA., 576 pp.
Barda, F., J.M. Hanson, and W.G. Corley (1977). “Shear Strength of Low-Rise Walls with Boundary Elements,” American Concrete Institute, Detroit, MI, pp. 149-202.
Carrillo, J., and S. Alcocer (2012c). “Backbone Model for Performance-Based Seismic Design of RC Walls for Low-Rise Housing,” Earthquake Spectra, Vol. 28, No. 3, pp. 943-964.
Carrillo, J., and S. Alcocer (2013). “Shear Strength of Reinforced Concrete Walls for Seismic Design of Low-Rise Housing,” ACI Structural Journal, Vol. 110, No. 3, pp. 415-425.
Cheng, M.-Y., Y. Chou, and L.S.B. Wibowo (2020). “Cyclic Response of Reinforced Concrete Squat Walls to Boundary Element Arrangement,” ACI Structural Journal, Vol. 117, No. 4, pp. 15-24.
Cheng, M.-Y., S.-C. Hung, R.D. Lequesne, and A. Lepage (2016). “Earthquake-Resistant Squat Walls Reinforced with High- Strength Steel,” ACI Structural Journal, Vol. 113, No. 5, pp. 1065-1076.
Cheng, M.-Y., L.S.B. Wibowo, M.B. Giduquio, and R.D. Lequesne (2021). “Strength and Deformation of Reinforced Concrete Squat Walls with High-Strength Materials,” ACI Structural Journal, Vol. 118, No. 1, pp. 125-137.
Collins, M.P., and D. Mitchell (1991). Material Properties: Prestressed Concrete Structures, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 766 pp.
Gulec, C.K., and A.S. Whittaker (2011). “Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls,” ACI Structural Journal, Vol. 108, No. 1, pp. 80-89.
Hetenyi, M. (1946). Beams on Elastic Foundations, University of Michigan Press, Ann Arbor, 282 pp.
Hidalgo, P.A., and R.M. Jordan (1996). “Strength and energy dissipation characteristics of reinforced concrete walls under shear failure,” Paper No. 816, 11th World Conference on Earthquake Engineering, Acapulco, Mexico, pp. 23-28.
Hwang S.-J., W.-H. Fang, H.-J. Lee, and H.-W. Yu (2001). “Analytical Model for Predicting Shear Strengthof Squat Walls,” Journal of Structural Engineering, Vol. 127, No. 1, pp. 43-50.
Hwang S.-J., and H.-J. Lee (2002). “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, Vol. 128, No. 12, pp. 1519-1526.
Hwang, S.-J., R.-J. Tsai, W.-K. Lam, and J.P. Moehle (2017). “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, Vol. 114, No. 5, pp. 1239-1247.
Lehman, D.E., and J.P. Moehle (2000). “Seismic Performance of Well-Confined Concrete Bridge Columns.”PEER Report 1998-01, Pacific Earthquake Engineering Research Center, Berkeley, CA.
Li, B., and W. Xiang (2011). “Effective Stiffness of Squat Structural Walls,” Journal of Structural Engineering, Vol. 137, No. 12, pp. 1470-1479.
Moehle, J.P. (2014). Seismic Design of Reinforced Concrete Buildings, McGraw-Hill Education, 778 pp.
Moehle, J.P., T. Ghodsi, J.D. Hooper, D.C. Fields, and R. Gedhada (2011). “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No. 6, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, NIST GCR 11-917-11REV-1.
Oesterle, R.G., A.E. Fiorato, L.S. Johal, J.E. Carpenter, and H.G. Russell (1976). “Earthquake Resistant Structural Walls Tests of Isolated Walls.”PCA-R/D-SER-1571, Portland Cement Association, Washington, D.C.
Paulay, T., and M.J.N. Priestley (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley Interscience, New York, NY, 769 pp.
Poli, S.D., M.D. Prisco, and P.G. Gambarova (1992). “Shear Response, Deformations, and Subgrade Stiffness of a Dowel Bar Embedded in Concrete,” ACI Structural Journal, Vol. 89, No. 6, pp. 665-675.
Soroushian, P., K. Obaseki, and M.C. Rojas (1987). “Bearing Strength and Stiffness of Concrete Under Reinforcing Bars,” ACI Materials Journal, Vol. 84, No. 3, pp. 179-184.
Thorenfeldt, E., A. Tomaszewicz, and J.J. Jensen (1987). “Mechanical Properties of High-Strength Concrete and Applications to Design,” Proceedings of the Symposium Utilization of High-Strength Concrete, Tapir, Tronheim, pp. 149-159.
Weng, P.-W., Y.-A. Li, Y.-S. Tu, and Hwang S.-J. (2017). “Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear,” Journal of Structural Engineering, Vol. 143, No. 10, 04017141.
Wood, S.L. (1990). “Shear Strength of Low-Rise Reinforced Concrete Walls,” ACI Structural Journal, Vol. 87, No. 1, pp. 1239-1248.
廖文正、林致淳、詹穎雯,2016、「台灣混凝土彈性模數建議公式研究」,結構工程期刊,31(3),第5-31頁。
邱騰億,「鋼筋混凝土低矮剪力牆之等效勁度」,碩士論文,國立臺灣科技大學,營建工程系,台北,2019,77 頁。

QR CODE