簡易檢索 / 詳目顯示

研究生: 葉建男
Chien-nan Yeh
論文名稱: 利用射頻磁控反應式濺鍍法製備金紅石結構二氧化鈦及二氧化釕異質奈米結構之特性分析
Growth and characterization of well aligned densely packed R-TiO2 and RuO2/R-TiO2 hetero nanocrystals via reactive magnetron sputtering
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 程光蛟
Kwong-kau Tiong
孫澄源
Cheng-yuan Sun
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 二氧化鈦二氧化釕反應磁控式濺鍍拉曼場發射電子顯微鏡
外文關鍵詞: TiO2, RuO2, reactive magnetron sputtering, XPS, Raman scattering
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

使用射頻磁控反應式濺鍍法製備異質奈米材料於SA(100)、SA(012) 、LTO(012)基板上。本實驗分為二部份,一為先行沉積金紅石結構二氧化鈦於以上各種基板上,探討金紅石結構二氧化鈦奈米柱形貌與不同收尾狀態;另一則是將其二氧化釕沉積於第一部分所製備的二氧化鈦之上,探討其異質奈米材料的疊接於不同介面有何變化。以上皆使用拉曼散射光譜儀(Raman)、X光繞射儀(XRD)、場發射式電子顯微鏡(FESEM)及X光光電子能譜儀(XPS),來探討二氧化鈦及二氧化釕沉積於不同基板上,對其異質接面奈米結構的表面形貌、晶體結構以及光學特性。
場發射式電子顯微鏡(FESEM)呈現出排列整齊且垂直成長的R-TiO2於SA(100)基板,不同於SA(012)、LTO(012)基板上所呈現,傾斜約33度角的R-TiO2;從X光繞射儀(XRD)得知於SA(100)基板上的 R-TiO2成長方向為(001),換言之,於SA(012)、LTO(012) 基板上的 R-TiO2成長方向則是(101);藉由拉曼散射光譜儀(Raman)辨別樣品的晶體結構與品質,且其譜線顯示奈米尺寸的二氧化釕及二氧化鈦會造成譜線的Eg mode半高寬和紅移現象;X光光電子能譜儀(XPS)來得到定性及定量分析,其元素組成為Ti:O2與Ru:O2為1:2。
場發射式電子顯微鏡(FESEM)與X光繞射儀(XRD)呈現所成長之RuO2/R-TiO2異質奈米結構,共存著排列整齊且垂直成長的RuO2(001)與呈現出類似V形貌的RuO2(101)於不同收尾狀態的R-TiO2上。成長異質奈米材料於不同介面上所產生的變化,本文將深入探討。


We report the growth of well-aligned densely-packed rutile phase TiO2 (R-TiO2) nanocrystals (NCs) and RuO2/R-TiO2 heteronanostructures on sapphire SA(100), SA(012), and LTO(012) substrates via reactive magnetron sputtering using Ti and Ru metal targets under different conditions. The surface morphology, structural and spectroscopic properties of the as-deposited NCs are characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy.
FESEM micrographs reveal the growth of vertically aligned TiO2 NCs on SA(100), whereas the NCs on the SA(012) and LTO(012) are grown with a tilt angle of ~33 from the normal to substrates. The XRD results show that rutile phase TiO2 NCs with either (001) orientation on SA(100) substrate or (101) orientation on SA(012)/ LTO(012) substrates. A strong substrate effect on the alignment of the TiO2 NCs growth is demonstrated and the probable mechanism for the formation of these NCs is discussed. XPS analyses show an oxygen vs. titanium ratio of 2.0 ± 0.1 for the as-grown TiO2 NCs. Raman spectra of R-TiO2 NCs exhibit a slight redshift in the peak position and a small broadening in linewidth with respect to that of the bulk counterpart.
FESEM micrographs and XRD patterns of RuO2/R-TiO2 heteronanostructures indicate that the growth of coexistence of vertically aligned RuO2(001) and twinned V-shaped RuO2(101) NCs on top of R-TiO2 NCs. The probable mechanisms for the formation of well-aligned RuO2 NCs on top of R-TiO2 NCs are discussed.

論文摘要........................................I Abstract .......................................III 誌 謝 .......................................IV 目錄 .......................................V 圖目錄 .......................................IX 表索引 .......................................XIV 第一章 緒論 ..............................1 1.1 二氧化鈦(TiO2) .....................1 1.2 二氧化釕 ..............................3 1.3奈米結構探討與研究動機 .....................5 第二章 實驗方法與步驟 .....................8 2.1 實驗流程圖 ..............................8 2.1 實驗流程圖 ..............................8 2.2 樣品製備 ..............................9 2.2.1 實驗藥品 ..............................9 2.2.2 射頻磁控反應式濺鍍設備(radio frequency reactive magnetron sputtering system) .......................................11 2.2.2.1 RF 磁控濺鍍 (Radio Frequency Magnetron Sputtering) ..11 2.2.3 二氧化釕(RuO2)與二氧化鈦(TiO2)奈米結構沉積步驟 ..13 2.2特性分析方法 ..............................14 2.2.1拉曼光譜儀 (Raman) .....................14 2.2.2 X-ray繞射儀 (XRD) .....................14 2.2.3場發射掃描式電子顯微鏡 (FESEM) ............17 2.2.4 穿透式電子顯微鏡 (TEM) ............17 2.2.5 X-ray光電子光譜儀 (XPS) ............18 第三章 實驗結果與討論 .....................21 3.1 二氧化鈦奈米結構之成長 .....................21 3.1.1 二氧化鈦金紅石結構 (R-TiO2) 成長於Sapphire SA(100) 基板之特性分析 ...27 3.1.1.1 沉積條件為Ar/O2=10/10 sccm ............27 3.1.1.2 沉積條件為Ar/O2=10/2 sccm ............32 3.1.2 二氧化鈦金紅石結構 (R-TiO2) 成長於Sapphire SA(012)基板之特性分析 ...39 3.1.3 二氧化鈦金紅石結構 (R-TiO2) 成長於 LTO(012)基板之特性分析 ...44 3.1.4 二氧化鈦金紅石結構 (R-TiO2)之XPS特性分析 .....................50 3.2 二氧化釕/二氧化鈦異質奈米結構之成長與其特性分析 .....................53 3.2.1 二氧化釕(RuO2)/二氧化鈦金紅石結構(R-TiO2)異質奈米結構成長於Sapphire SA(100) 基板之特性分析 ................................................53 3.1.2.1 沉積條件為Ar/O2=10/10 sccm .......................................53 3.1.2.2 沉積條件為Ar/O2=10/10 sccm .......................................59 3.2.2 二氧化釕(RuO2)/二氧化鈦金紅石結構(R-TiO2)異質奈米結構成長於Sapphire SA(012) 基板之特性分析 ................................................64 3.2.3 二氧化釕(RuO2)/二氧化鈦金紅石結構(R-TiO2)異質奈米結構成長於LTO(012) 基板之特性分析 ..........................................................70 3.2.4 二氧化釕(RuO2)/二氧化鈦金紅石結構(R-TiO2)異質奈米結構之XPS特性分析 ...76 第四章 結論 ..........................................................79 參考文獻 ...................................................................81

1. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K., and Grimes, C. A., 2004, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Lett., Vol. 6, No. 2, pp. 215–218.
2. Grätzel, M., 2003, “Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology C: Photochemistry Rev., Vol. 4, No. 2, pp. 145-153.
3. Zeman, P., and Takabayashi, S., 2003, “Nano-Scaled Photocatalytic TiO2 Thin Films Prepared by Magnetron Sputtering,” Thin Solid Films, Vol. 433, No. 1-2, pp. 57-62.
4. Zhang, X., Jin, M., Liu, Z., Tryk, D.A., Nishimoto, S., Murakami, T., and Fujishima, A., 2007, “Superhydrophobic TiO2 Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic−Superhydrophilic Patterning,” J. Phys. Chem. C, Vol. 111, No. 39, pp. 14521-14529.
5. Francioso, L., Presicce, D.S., Epifani, M., Siciliano, P., and Ficarell, A., 2005, “Response Evaluation of TiO2 Sensor to Flue Gas on Spark Ignition Engine and in Controlled Environment,” Sensors and Actuators B, Vol. 107, No. 2, pp. 563-571.
6. Kolmakov, A., and Moskovits, M., 2004, “Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures,” Annu. Rev. Mater. Res., Vol. 34, pp. 151-180.
7. Sakhno, O.V., Goldenberg, L. M., Stumpe, J., and Smirnova, T. N., 2007, “Surface Modified ZrO2 and TiO2 Nanoparticles Embedded in Organic Photopolymers for Highly Effective and UV-Stable Volume Holograms,” Nanotechnology, Vol. 18, No. 10, pp. 105704-105710.
8. Rabady, R., and Avrutsky, I., 2005, “Titania, Silicon Dioxide, and Tantalum Pentoxide Waveguides and Optical Resonant Filters Prepared With Radio-Frequency Magnetron Sputtering and Annealing”, Applied Optics, Vol. 44, No. 3, pp. 378-383.
9. 林士豪,2006,「以二氧化鈦薄膜為矽及砷化鎵金氧半結構介電層之特性分析」,碩士論文,國立中山大學,高雄市。
10. Labouriau, A., and Earl, W. L., 1997, “Titanium Solid-State NMR in Anatase, Brookite and Rutile,” Chem. Phys. Lett., Vol. 270, No 3-4, pp. 278-284.
11. Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., and Kurita, S., 2001, “Raman Spectroscopy and Phase Transition of Anatase TiO2 Under High Pressure,” J. Phys. Chem. Solids, Vol. 62, No. 4, pp. 717-721.
12. Hossks, N., Sekiya, T., and Kurita, S., 1997, “Excitonic State in Anatase TiO2 Single Crystal,” Journal of Luminescence, Vol. 72-74, pp. 874-875.
13. Okimura, K., 2001, “Low Temperature Growth of Rutile TiO2 Films in Modified RF Magnetron Sputtering,” Surf. Coat. Technol., Vol. 135, No. 2-3, pp. 286-290.
14. JCPDS card no. 77-0441, International Centre for Diffraction Data, Newtown Square, PA, USA.
15. JCPDS card no. 83-2243, International Centre for Diffraction Data, Newtown Square, PA, USA.
16. JCPDS card no. 21-1172, International Centre for Diffraction Data, Newtown Square, PA, USA.
17. Ryden, W. D., Lawson, A. W., and Sartain, C. C., 1970, “ Electrical Transport Properties of IrO2 and RuO¬2,” Phys. Rev. B, Vol. 1, No. 4, pp. 1494-1500.
18. Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., 1987, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization,” Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881.
19. Vadimsky, R. G., Frankenthal, R. P., and Thompson, D. E., 1979, “Ru and RuO2 as Electrical Contact Materials: Preparation and Environmental Interactions,” J. Electrochem. Soc., Vol. 126, No. 11, pp. 2017-2023.
20. Green, M. L., Gross, M. E., Papa, L. E., Schnoes, K. J., and Brasen, D., 1985, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films,” J. Electrochem. Soc., Vol. 132, No. 11, pp. 2677-2685.
21. Soudee, J., Chardin, G ., Giraudheraud, Y., Pari, P., and Chapellier, M., 1993, “Properties of NTD Number-23 Ge Sensor and RuO2 Films as Thermal Sensors for Bolometers,” J. of Low Temp. Phys., Vol. 93, No. 3-4, pp. 319-324.
22. Jia, O. X., Shi, Z. O., Jiao, K. L., and Anderson, W. A., 1991, ”Reactively Sputtered RuO2 Thin Film Resistor With Near Zero Temperature Coefficient of Resistance,” Thin Solid Films, Vol. 196, No. 1, pp. 29-34.
23. Bursill, L. A., Reaney, M. D., Vijay, P., and Desu, S. B., 1994, “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes,” J. Appl. Phys., Vol. 75, No. 3, pp. 1521-1525.
24. Al-Shareef, H. N., Bellur, K. R., Kingon, A. I., and Auciello, O., 1995, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 Capacitor Heterostructures,” Appl. Phys. Lett., Vol. 66, No. 2, pp. 239-241.
25. Bernstein, S. D., Wong, T. Y., Kisler, Y. Y., and Tustison, R. W., 1993, “Fatigue of Ferroelectric PbZrxTiyO3 Capacitors with Ru and RuOx Electrodes,” J. Mater. Res., Vol. 8, No. 1, pp. 12-13.
26. Jia, Q. X., Chang, L. H., and Anderson, W. A., 1994, “Surface and Interface Properties of Ferroelectric BaTiO3 Thin Films on Si using RuO2 as an Electrode,” J. Mater. Res., Vol. 9, No. 10, pp. 2561-2565.
27. Morales, A. M., and Lieber, C. M., 1998, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, Vol. 279, No. 5348, pp. 208-211.
28. Shi, W. S., Zheng, Y. F., Tang, Y. H., Lee, C. S., and Lee, S. T., 2001, “Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires,” Appl. Phys. Lett., Vol. 78, No. 21, pp. 3304-3306.
29. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y., and Lieber, C. M., 2001, “Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires,” Science, Vol. 293, No. 5534, pp. 1455-1457.
30. Kim, H. M., Kim, D. S., Park, Y. S., Kim, D. Y., Kang, T. W., and Chung, K. S., 2002, “Growth of GaN Nanorods by a Hydride Vapor Phase Epitaxy Method,” Adv. Mater., Vol. 14, No. 13-14, pp. 991-993.
31. Chen, C. C., and Yeh, C. C., 2000, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater., Vol. 12, No. 10, pp. 738-741.
32. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, Y., 2001, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, No. 5523, pp. 1897-1899.
33. Bai, Z. G., Yu, D. P., Zhang, H. Z., Ding, Y., Wang, Y. P., Gai, X. Z., Hang, Q. L., Xiong, G. C., and Feng, S. Q., 1999, “Nano-Scale GeO2 Wires Synthesized by Physical Evaporation,” Chem. Phys. Lett., Vol. 303, No. 3-4, pp. 311-314.
34. Choi, Y. C., Kim, W. S., Park, Y. S., Lee, S. M., Bae, D. J., Lee, Y. H., Park, G. S., Choi, W. B., Lee, N. S., and Kim, J. M., 2000, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge,” Adv. Mater., Vol. 12, No. 10, pp. 746-750.
35. Chen, R. S., Huang, Y. S., Liang, Y. M., Tsai, D. S., and Tiong, K. K., 2004, “Field Emission from Vertically Aligned Conductive IrO2 Nanorods,” Appl. Phys. Lett., Vol. 84, No. 9, pp. 1552-1554.
36. Chalamala, B. R., Wei, Y., Reuss, R. H., Aggarwal, S., Gnade, B. E., Ramesh, R., Bernhard, J. M., Sosa, E. D., and Golden, D. E., 1999, “Effect of Growth Conditions on Surface Morphology and Photoelectric Work Function Characteristics of Iridium Oxide Thin Films,” Appl. Phys. Lett., Vol. 74, No. 10, pp. 1394-1396.
37. Cha, S. Y., and Lee, H. C., 1999, “Deoxidization of Iridium Oxide Thin Film,” Jpn. J. Appl. Phys., Part 2, Vol. 38, No. 10A, pp. L1128-L1130.
38. Chen, R. S., Huang, Y. S., Chen, Y. L., and Chi, Y., 2002, “Preparation and Characterization of RuO2 Thin Films from Ru(CO)2(tmhd)2 by Metalorganic Chemical Vapor Deposition,” Thin Solid Films, Vol. 413 , No. 1-2, pp. 85-91.
39. Wu, J. J., and Liu, S. C., 2002, “Catalyst-Free Growth and Characterization of ZnO Nanorods,” J. Phys. Chem. B, Vol. 106, No. 37, pp. 9546-9551.
40. Blondeau G., 1979, “Influence of Copper Addition on Optical Properties of TiO2,” J. Electrochem Soc., Vol. 126, No. 9, pp. 1592-1596.
41. Fictorie, C. P., 1994, “Kinetic and Mechanistic Study of The Chemical Vapor Deposition of Titanium Dioxide Thin Films Using Tetrakis-( isopropoxo )-Tita-nium(IV),” J. Vac. Sci. Technol., Vol. 12, No. 4, pp. 1108-1113.
42. Yeung, K. S., and Lan, Y. W., 1983, “A Simple Chemical Vapor Deposition Method for Depositing Thin TiO2 films,” Thin Solid Films, Vol. 109, No. 2, pp. 169-178.
43. Kamata, K., 1990, “Rapid Formation of TiO2 Films by a Conventional CVD Method,” J. Mater. Sci. Lett., Vol. 9, No. 3, pp. 316-319.
44. Takikawa, H., 1983, “Properties of Titanium Oxides Film Prepared by Reactive Cathodic Vacuum Arc Deposition,” Thin Solid Films, Vol. 348, No. 1-2, pp. 145-151.
45. JCPDS card no. 10-0173, International Centre for Diffraction Data, Newtown Square, PA, USA.
46. JCPDS card no. 20-0631, International Centre for Diffraction Data, Newtown Square, PA, USA.
47. JCPDS card no. 29-0836, International Centre for Diffraction Data, Newtown Square, PA, USA.
48. Loudon, R., 1964, “The Raman Effect in Crystals,” Adv. Phys., Vol. 13, No. 44, pp. 423-482.
49. Porto, S.P.S., Fleury, P.A., Damen, T.C., 1967, “Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev., Vol. 154, No. 2, pp. 522-526.
50. Mar, S. Y., Chen, C. S., Huang, Y. S., and Tiong, K. K., 1995, “Characterization of RuO2 Thin Film by Raman Spectroscopy,” Appl. Surf. Sci., Vol. 90, No. 4, pp. 497-504.
51. Pétigny, S., Domenichini, B., Mostéfa-Sba, H., Lesniewska, E., Steinbrunn, A., and Bourgeois, S., 1999, “Molybdenum Deposition on TiO2(110) Surfaces With Different Stoichiometries,” Appl. Surf. Sci., Vol. 142, No. 1-4, pp. 114-119.
52. Göpel, W., Anderson, J.A., Frankel, D., Jaenig, M., Phillips, K., Schäffer, J. A., and Rocker, G.., 1984, “Surface Defects of TiO2(110): A Combined XPS, XAES and ELS Study,” Surf. Sci., Vol. 139, No. 1-3, pp. 333-346.
53 Huang, Y. S., and Pollak, F. H., 1982, “Raman Investigation of Rutile RuO2,” Solid State Commun., Vol. 43, No. 12, pp. 921-924.
54 Chen, C. C., Chen, R. S., Tsai, T. Y., Huang, Y. S., Tsai, D. S., and Tiong, K. K., 2004, “The Growth and Characterization of Well Aligned RuO2 Nanorods on Sapphire Substrates,” J. Phys.: Condens. Matter, Vol. 16, No. 47, pp. 8475-8484.

無法下載圖示 全文公開日期 2011/06/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2011/06/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE