簡易檢索 / 詳目顯示

研究生: 郭瑋軒
Wei-Hsuan Kuo
論文名稱: 含聚乙二醇及兩性分子之共聚合物之合成並應用於改善血液相容性之研究
Synthesis of PEG Containing and Zwitterionic Copolymers for Improving Blood Compatibility
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 蔡偉博
Wei-Bor Tsai
王勝仕
Steven S.-S. Wang
李振綱
Cheng-Kang Lee
林睿哲
Jui-Che Lin
林達顯
Ta-Hsien Lin
王文
Wun Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 152
中文關鍵詞: 多層膜聚電解質沈積兩性高分子磺基甜菜鹼 (SBMA)甲基丙烯酸聚乙二醇酯 (PEGMA)光固定疊氮苯胺 (Az)血液相容性血小板吸附纖維蛋白原吸附
外文關鍵詞: Zwitterionic polymer, Layer-by-layer polyelectrolyte deposition, Sulfobetaine methacrylate (SBMA), Poly(ethylene glycol) methacrylate (PEGMA), Photo-immobilization, Azidoaniline (Az), Hemocompatibility, Platelet adhesion, Fibrinogen adsorption
相關次數: 點閱:574下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之目標為合成含磺基甜菜鹼 (sulfobetaine methacrylate, SBMA) 兩性離子的高分子、以及甲基丙烯酸聚乙二醇酯(poly(ethylene glycol methacrylate), PEGMA)高分子,進行材料表面處理,並藉由血小板及纖維蛋白原吸附、及血漿凝固時間測試,評估材料表面血液相容性。在合成SBMA及丙烯酸 (acrylic acid, AA)單體之共聚合物poly(SBMA-co-AA)方面,改變共聚合物中SBMA之比例,以及共聚合物吸附時的環境pH值,利用多層膜堆疊技術,進行血液相容性測試。結果顯示由poly(SBMA56-co-AA44)於pH 3.0條件下所製備的表面,最能有效抑制血小板及纖維蛋白原之吸附。同時,多層膜堆疊技術可應用於不同基材表面,且此改質方式於酸性、鹼性環境中,皆具有良好之穩定性,可維持其抑制血小板吸附之特性。
在合成poly(PEGMA-co-AA)共聚合物的研究方面,探討接枝具有光敏感性疊氮苯胺 (azidoaniline, Az)之效應,合成poly(PEGMA-co-AA-g-Az)。實驗結果顯示poly(PEGMA-co-AA-g-Az)所修飾之表面可大幅降低血小板及纖維蛋白原吸附,同時血小板吸附量亦隨共聚合物塗佈量之增加而減少。另外,具有較高的PEGMA含量所修飾之表面,具有較佳的血液相容性。含疊氮苯胺之共聚高分子可經交聯修飾表面,在酸性以及鹼性環境中皆具有良好之穩定性,可有效抑制血小板吸附。在應用方面,利用所合成之共聚合高分子修飾於微流道,並進行流動狀態下之血小板吸附測試,結果顯示在不同的剪切速率環境下,兩種高分子所修飾之表面皆能有效降低血小板吸附,顯示此兩種共聚合物可廣泛應用於修飾不同材料之表面,於靜態以及動態情形下皆能抑制血小板貼附,提供材料優異之血液相容性。


In this thesis, the copolymers containing sulfobetaine methacrylate (SBMA) and poly(ethylene glycol) methacrylate (PEGMA) moieties were synthesized and employed for surface modifications. The hemocompatibility of the modified surfaces was evaluated by platelet adhesion, fibrinogen adsorption, and plasma clotting time tests. The poly(SBMAx-AAy) copolymers were immobilized onto polymeric substrates by layer-by-layer polyelectrolyte deposition and the coating demonstrated excellent resistance to platelets and fibrinogen adsorption. Moreover, this technique is applicable for various substrates and possesses great durability under acid and basic conditions. On the other hand, the surface modified with photosensitive azidoaniline (Az) grafted poly(PEGMA-co-AA-g-Az) revealed excellent blood compatibility that significantly inhibited platelet adhesion and fibrinogen adsorption. Moreover, the effect was promoted by the increased casting volume and with higher PEGMA ratio in copolymers. Az group assisted the crosslinking of poly(PEGMA-co-AA) onto substrate which supported the stability of the coating of copolymers under rigorous conditions. Finally, we demonstrated that the coatings of both poly(SBMA-co-AA) and poly(PEGMA-co-AA-g-Az) onto PDMS micro-fluidic channels which mimics the blood flow system maintained excellent platelets resistance. The overall results indicated the synthesized copolymers are applicable on a wide range of substrates with superior hemocompatibility and stability under both static and dynamic which can be further applied in biomedical applications.

摘要 I Abstract II 誌謝 III Contents V List of Figures VIII List of Tables XIII Abbreviations XIV Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Blood compatibility 3 2.2 Blood-materials interactions 6 2.3 Surface modification for improving blood compatibility 8 2.3.1 Heparin 8 2.3.1 PEG based materials (hydrophilic surfaces) 10 2.3.2 Zwitterionic based polymers 12 2.4 Effects of shear stress on platelet adhesion 20 2.5 The approaches to incorporate PEG based polymers or zwitterionic based polymers 21 2.5.1 Hydrophobic interactions 23 2.5.2 Self-assembled monolayer (SAM) 24 2.5.3 Surface grafting 24 2.5.4 Graft polymerization 25 2.6 Modification of layer-by-layer polyelectrolyte deposition 26 2.7 Photo-immobilization by aryl azides 27 Chapter 3 Experimental 30 3.1 Chemicals and materials 30 3.1.1 Chemicals 30 3.1.2 Materials 32 3.2 Instruments 33 3.3 Methods 34 3.3.1 Preparation of buffer and reagent 34 3.3.2 Synthesis of poly(SBMA-co-AA) copolymers 34 3.3.3 Synthesis of PAA-g-Az 35 3.3.4 Synthesis of poly(PEGMA-co-AA-g-Az) copolymers 35 3.3.5 Substrate preparation 36 3.3.6 Preparation of poly(SBMA-co-AA) deposited surfaces 37 3.3.7 Preparation of poly(PEGMA-co-AA-g-Az) coating surface 37 3.3.8 Surface characterizations of the copolymers coated surfaces 38 3.3.9 Stability tests 38 3.3.10 Platelet adhesion tests 39 3.3.11 Fibrinogen adsorption tests (ELISA assay) 40 3.3.12 Plasma clotting time tests 41 3.3.13 Fabrication of PDMS micro-fluidic channels 41 3.3.14 Platelet adhesion tests in flow system 43 3.3.15 Statistical analysis 44 Chapter 4 Results and Discussion 50 4.1 Blood compatibility for poly(SBMA-co-AA) coating 50 4.1.1 Characterization of poly(SBMA-co-AA) copolymers 50 4.1.2 Surface characterization of poly(SBMA-co-AA) modified TCPS 50 4.1.3 Platelet adhesion and Fibrinogen adsorption 52 4.1.4 Applicability of poly(SBMA-co-AA) on different substrates 54 4.1.5 Stability of TLP/poly(SBMA-co-AA) modified surfaces 54 4.1.6 Plasma clotting time tests 55 4.1.7 Discussion 55 4.2 Blood compatibility for poly(PEGMA-co-AA-g-Az) coating 74 4.2.1 Characterization of poly(PEGMA-co-AA-g-Az) copolymers 74 4.2.2 Surface characterization of TCPS deposited with poly(PEGMA-co-AA-Az) 75 4.2.3. Platelet adhesion and Fibrinogen adsorption 76 4.2.4 Stability of poly(PEGMA-co-AA-g-Az) coated surfaces 77 4.2.5 Applicability of poly(PEGMA-co-AA-g-Az) coating on different substrates 78 4.2.6 Plasma clotting time tests 79 4.2.7 Discussion 79 4.3 Comparing TLP/poly(SBMA-co-AA) and poly(PEMGA-co-AA) coating surfaces 98 4.4 Platelet adhesion tests for TLP/poly(SBMA-co-AA) and poly(PEMGA-co-AA) coated surfaces under flow condition 102 4.4.1 Surface characterizations of TLP/poly(SBMA-co-AA) and poly(PEMGA-co-AA) coated on microfluidic channels 102 4.4.2 Platelet adhesion under flow condition 103 Chapter 5 Conclusion 110 References 111 Appendix 127 作者簡介 130 論文著作 131

1. Tsai, W. B.; Horbett, T. A., The role of fibronectin in platelet adhesion to plasma preadsorbed polystyrene. Journal of Biomaterials Science-Polymer Edition 1999, 10, (2), 163-181.
2. Nesbitt, W. S.; Giuliano, S.; Kulkarni, S.; Dopheide, S. M.; Harper, I. S.; Jackson, S. P., Intercellular calcium communication regulates platelet aggregation and thrombus growth. Journal of Cell Biology 2003, 160, (7), 1151-1161.
3. Brash, J. L., Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials. Journal of Biomaterials Science-Polymer Edition 2000, 11, (11), 1135-1146.
4. Archambault, J. G.; Brash, J. L., Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloids and Surfaces B: Biointerfaces 2004, 39, (1-2), 9-16.
5. Unsworth, L. D.; Sheardown, H.; Brash, J. L., Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir 2005, 21, (3), 1036-1041.
6. Chen, S.; Li, L.; Zhao, C.; Zheng, J., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, (23), 5283-5293.
7. Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29, (32), 4285-4291.
8. Wendel, H. P.; Ziemer, G., Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. European Journal of Cardio-Thoracic Surgery 1999, 16, (3), 342-350.
9. Hanson, S.; Lalor, P. A.; Niemi, S. M.; Northrup, S. J.; Ratner, B. D.; Spector, M.; Vale, B. H.; Willson, J. E., Testing biomaterials. In Biomaterials Science: An Introduction to Materials in Medicine, Ratner, B. D.; Schoen, F. J.; Lemons, J. E., Eds. Elsevier Academic Press: San Diego, CA, 1996; pp 215-242.
10. Hanson, S. R., Blood Coagulation and Blood-Materials Interactions. In Biomaterials Science: An Introduction to Materials in Medicine, Second ed.; Ratner, B. D.; Hoffman, A. S.; Scheon, F. J.; Lemons, J. E., Eds. Elsevier Academic Press: San Diego, 2004; pp 332-338.
11. George, J. N.; Nurden, A. T.; Phillips, D. R., Molecular Defects in Interactions of Platelets with the Vessel Wall. New England Journal of Medicine 1984, 311, (17), 1084-1098.
12. Ratner, B. D., The Blood Compatibility Catastrophe. Journal of Biomedical Materials Research 1993, 27, (3), 283-287.
13. Colman, R. W.; Scott, C. F.; Schmaier, A. H.; Wachtfogel, Y. T.; Pixley, R. A.; Edmunds, L. H., Initiation of Blood Coagulation at Artificial Surfaces. Annals of the New York Academy of Sciences 1987, 516, (1), 253-267.
14. Wang, M. J.; Tsai, W. B., Biomaterials in Blood-Contacting Devices: Complications and Solutions. Nova Science Pub Inc: 2010.
15. Tsai, W. B.; Grunkemeier, J. M.; McFarland, C. D.; Horbett, T. A., Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand's factor. Journal of Biomedical Materials Research 2002, 60, (3), 348-359.
16. Tsai, W. B.; Grunkemeier, J. M.; Horbett, T. A., Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. Journal of Biomedical Materials Research Part A 1999, 44, (2), 130-139.
17. Wu, Y.; Simonovsky, F. I.; Ratner, B. D.; Horbett, T. A., The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A 2005, 74, (4), 722-738.
18. Wu, Y.; Zhang, M.; Hauch, K. D.; Horbett, T. A., Effect of adsorbed von Willebrand factor and fibrinogen on platelet interactions with synthetic materials under flow conditions. Journal of Biomedical Materials Research Part A 2008, 85A, (3), 829-839.
19. Kwak, D.; Wu, Y.; Horbett, T. A., Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A 2005, 74A, (1), 69-83.
20. Lindon, J. N.; McManama, G.; Kushner, L.; Merrill, E. W.; Salzman, E. W., Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces? Blood 1986, 68, (2), 355-362.
21. Tsai, W. B.; Grunkemeier, J. M.; Horbett, T. A., Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrene-based materials: A multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen. Journal of Biomedical Materials Research Part A 2003, 67, (4), 1255-1268.
22. Waples, L. M.; Olorundare, O. E.; Goodman, S. L.; Lai, Q. J.; Albrecht, R. M., Platelet-polymer interactions: Morphologic and intracellular free calcium studies of individual human platelets. Journal of Biomedical Materials Research 1996, 32, (1), 65-76.
23. Hato, T.; Oda, A.; Ozaki, Y.; Minamoto, Y.; Nakatani, S.; Watanabe, A.; Kume, S.; Ikeda, Y.; Fujita, S., Outside-in signaling from integrin alpha IIb beta 3 into platelets in the absence of agonist-induced signaling. International Journal of Hematology 1997, 65, (4), 385-395.
24. Comfurius, P.; Williamson, P.; Smeets, E. F.; Schlegel, R. A.; Bevers, E. M.; Zwaal, R. F., Reconstitution of phospholipid scramblase activity from human blood platelets. Biochemistry 1996, 35, (24), 7631-7634.
25. Chuang, H. Y.; Crowther, P. E.; Mohammad, S. F.; Mason, R. G., Interactions of thrombin and antithrombin III with artificial surfaces. Thrombosis Research 1979, 14, (2-3), 273-282.
26. Grunkemeier, J. M.; Tsai, W. B.; Horbett, T. A., Co-adsorbed fibrinogen and von Willebrand factor augment platelet procoagulant activity and spreading. Journal of Biomaterials Science-Polymer Edition 2001, 12, (1), 1-20.
27. Zhao, X.; Courtney, J. M.; Yin, H. Q.; West, R. H.; Lowe, G. D. O., Blood interactions with plasticised poly (vinyl chloride): influence of surface modification. Journal of Materials Science: Materials in Medicine 2008, 19, (2), 713-719.
28. Jee, K. S.; Dal Park, H.; Park, K. D.; Ha Kim, Y.; Shin, J. W., Heparin conjugated polylactide as a blood compatible material. Biomacromolecules 2004, 5, (5), 1877-1881.
29. Gott, V. L.; Whiffen, J. D.; Dutton, R. C., Heparin Bonding on Colloidal Graphite Surfaces. Science 1963, 142, (3597), 1297-1298.
30. Hsu, L. C., Heparin-coated cardiopulmonary bypass circuits: current status. Perfusion-Uk 2001, 16, (5), 417-428.
31. Bjork, I.; Lindahl, U., Mechanism of the Anticoagulant Action of Heparin. Molecular and Cellular Biochemistry 1982, 48, (3), 161-182.
32. Gorman, R. C.; Ziats, N. P.; Rao, A. K.; Gikakis, N.; Sun, L.; Khan, M. M. H.; Stenach, N.; Sapatnekar, S.; Chouhan, V.; Gorman, J. H.; Niewiarowski, S.; Colman, R. W.; Anderson, J. M.; Edmunds, L. H., Surface-bound heparin fails to reduce thrombin formation during clinical cardiopulmonary bypass. Journal of Thoracic and Cardiovascular Surgery 1996, 111, (1), 1-11.
33. Begovac, P. C.; Thomson, R. C.; Fisher, J. L.; Hughson, A.; Gallhagen, A., Improvements in GORE-TEX (R) Vascular Graft performance by Carmeda (R) BioActive Surface heparin immobilization. European Journal of Vascular and Endovascular Surgery 2003, 25, (5), 432-437.
34. Kidane, A. G.; Salacinski, H.; Tiwari, A.; Bruckdorfer, K. R.; Seifalian, A. M., Anticoagulant and antiplatelet agents: Their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules 2004, 5, (3), 798-813.
35. Lever, R.; Page, C. R., Novel drug development opportunities for heparin. Nature Reviews Drug Discovery 2002, 1, (2), 140-148.
36. Hubbell, J. A., Pharmacological Modification of Materials. Cardiovascular Pathology 1993, 2, (3), S121-S127.
37. Olsson, P.; Sanchez, J.; Mollnes, T. E.; Riesenfeld, J., On the blood compatibility of end-point immobilized heparin. Journal of Biomaterials Science-Polymer Edition 2000, 11, (11), 1261-1273.
38. Tanzi, M. C., Bioactive technologies for hemocompatibility. Expert Review of Medical Devices 2005, 2, (4), 473-492.
39. Larm, O.; Larsson, R.; Olsson, P., A New Non-Thrombogenic Surface Prepared by Selective Covalent Binding of Heparin Via a Modified Reducing Terminal Residue. Artificial Cells, Blood Substitutes and Biotechnology 1983, 11, (2-3), 161-173.
40. Calistri-Yeh, M.; Rosebrough, S.; Chamberlain, A.; Donish, W.; Whitbourne, R., Drug-eluting polymer coatings for cardiac stents. Abstracts of Papers of the American Chemical Society 2002, 224, U471-U471.
41. Greinacher, A.; Volpel, H.; Janssens, U.; Hach-Wunderle, V.; Kemkes-Matthes, B.; Eichler, P.; Mueller-Velten, H. G.; Potzsch, B., Recombinant Hirudin (Lepirudin) Provides Safe and Effective Anticoagulation in Patients With Heparin-Induced Thrombocytopenia Circulation 1999, 99, 73-80.
42. Pauzner, R.; Dulitzki, M.; Langevitz, P.; Livneh, A.; Kenett, R.; Many, A., Low molecular weight heparin and warfarin in the treatment of patients with antiphospholipid syndrome during pregnancy. Thrombosis and Haemostasis 2001, 86, (6), 1379-1384
43. Andrade, J. D., Interfacial phenomena and biomaterials. Medical Instrumentation 1973, 7, (2), 110-119.
44. Coleman, D. L.; Gregonis, D. E.; Andrade, J. D., Blood-materials interactions: the minimum interfacial free energy and the optimum polar/apolar ratio hypotheses. Journal of Biomedical Materials Research 1982, 16, (4), 381-398.
45. Jeon, S. I.; Lee, J. H.; Andrade, J. D.; Degennes, P. G., Protein Surface Interactions in the Presence of Polyethylene Oxide .1. Simplified Theory. Journal of Colloid and Interface Science 1991, 142, (1), 149-158.
46. Lee, J. H.; Kopecek, J.; Andrade, J. D., Protein-Resistant Surfaces Prepared by Peo-Containing Block Copolymer Surfactants. Journal of Biomedical Materials Research 1989, 23, (3), 351-368.
47. Murat, M.; Grest, G. S., Structure of a Grafted Polymer Brush - a Molecular-Dynamics Simulation. Macromolecules 1989, 22, (10), 4054-4059.
48. Nagaoka, S.; Mori, Y.; Tanzawa, H.; Nishiumi, S., Interaction between blood components and hydrogels with poly(oxyethylene) chains. In Polymers as Biomaterials, Shalaby, S. W.; Hoffman, A. S.; Ratner, B. D.; Horbett, T. A., Eds. Plenum Press: New York, 1984; pp 361-374.
49. Hoffman, A. S., Non-fouling surface technologies. Journal of Biomaterials Science-Polymer Edition 1999, 10, (10), 1011-1014.
50. Hermans, J., Excluded-Volume Theory of Polymer Protein Interactions Based on Polymer-Chain Statistics. Journal of Chemical Physics 1982, 77, (4), 2193-2203.
51. Knoll, D.; Hermans, J., Polymer-Protein Interactions - Comparison of Experiment and Excluded Volume Theory. Journal of Biological Chemistry 1983, 258, (9), 5710-5715.
52. Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N., Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research 1998, 39, (2), 323-330.
53. Zwaal, R. F. A.; Comfurius, P.; Vandeenen, L. L. M., Membrane Asymmetry and Blood-Coagulation. Nature 1977, 268, (5618), 358-360.
54. Nakabayashi, N.; Iwasaki, Y., Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering 2004, 14, (4), 345-354.
55. Lewis, A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces 2000, 18, (3-4), 261-275.
56. Vermette, P.; Meagher, L., Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces 2003, 28, (2-3), 153-198.
57. Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N., Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research 1992, 26, (12), 1543-1552.
58. Lewis, A. L.; Hughes, P. D.; Kirkwood, L. C.; Leppard, S. W.; Redman, R. P.; Tolhurst, L. A.; Stratford, P. W., Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices. Biomaterials 2000, 21, (18), 1847-1859.
59. Iwasaki, Y.; Yamasaki, A.; Ishihara, K., Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility. Biomaterials 2003, 24, (20), 3599-3604.
60. Lewis, A. L.; Furze, J. D.; Small, S.; Robertson, J. D.; Higgins, B. J.; Taylor, S.; Ricci, D. R., Long-term stability of a coronary stent coating post-implantation. Journal of Biomedical Materials Research 2002, 63, (6), 699-705.
61. Ishihara, K.; Fukumoto, K.; Iwasaki, Y.; Nakabayashi, N., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials 1999, 20, (17), 1553-1559.
62. Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society 2005, 127, (41), 14473-14478.
63. Wang, D. A.; Williams, C. G.; Li, Q. A.; Sharma, B.; Elisseeff, J. H., Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 2003, 24, (22), 3969-3980.
64. Ueda, T.; Oshida, H.; Kurita, K.; Ishihara, K.; Nakabayashi, N., Preparation of 2-Methacryloyloxyethyl Phosphorylcholine Copolymers with Alkyl Methacrylates and Their Blood Compatibility. Polymer Journal 1992, 24, (11), 1259-1269.
65. Ladenheim, H.; Morawetz, H., A new type of polyampholyte: Poly(4-vinyl pyridine betaine). Journal of Polymer Science 1957, 26, (113), 251-254.
66. Hart, R.; Timmerman, D., New polyampholytes: The polysulfobetaines. Journal of Polymer Science 1958, 28, (118), 638-640.
67. Lowe, A. B.; McCormick, C. L., Synthesis and solution properties of zwitterionic polymers. Chemical Reviews 2002, 102, (11), 4177-4189.
68. Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D., Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science 2008, 33, (11), 1059-1087.
69. Zhang, Z.; Cheng, G.; Carr, L. R.; Vaisocherov, H.; Chen, S.; Jiang, S., The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 2008, 29, (36), 4719-4725.
70. Yang, W.; Chen, S.; Cheng, G.; Vaisocherova, H.; Xue, H.; Li, W.; Zhang, J.; Jiang, S., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24, (17), 9211-9214.
71. Zhang, Z.; Chen, S.; Jiang, S., Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
72. Chang, Y.; Liao, S. C.; Higuchi, A.; Ruaan, R. C.; Chu, C. W.; Chen, W. Y., A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
73. Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
74. Zhang, Z.; Chen, S.; Chang, Y.; Jiang, S., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
75. Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, (5), 1357-1361.
76. Vaisocherova, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J. I.; Jiang, S., Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Analytical Chemistry 2008, 80, (20), 7894-7901.
77. Emmenegger, C. R.; Brynda, E.; Riedel, T.; Sedlakova, Z.; Houska, M.; Alles, A. B., Interaction of blood plasma with antifouling surfaces. Langmuir 2009, 25, (11), 6328-6333.
78. Zhang, Z.; Chao, T.; Chen, S.; Jiang, S., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
79. Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J. D.; Jiang, S., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
80. Li, G.; Cheng, G.; Xue, H.; Chen, S.; Zhang, F.; Jiang, S., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008, 29, (35), 4592-4597.
81. Li, G.; Xue, H.; Cheng, G.; Chen, S.; Zhang, F.; Jiang, S., Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. Journal of Physical Chemistry B 2008, 112, (48), 15269-15274.
82. Chen, L.; Honma, Y.; Mizutani, T.; Liaw, D. J.; Gong, J. P.; Osada, Y., Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 2000, 41, (1), 141-147.
83. Lowe, A. B.; Billingham, N. C.; Armes, S. P., Synthesis and Properties of Low-Polydispersity Poly(sulfopropylbetaine)s and Their Block Copolymers. Macromolecules 1999, 32, (7), 2141-2148.
84. Liaw, D. J.; Huang, C. C., Dilute solution properties of poly(3-dimethyl acryloyloxyethyl ammonium propiolactone). Polymer 1997, 38, (26), 6355-6362.
85. Kathmann, E. E.; White, L. A.; McCormick, C. L., Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer 1997, 38, (4), 879-886.
86. Lee, W. F.; Huang, G. Y., Poly(sulfobetaine)s and corresponding cationic polymers: 5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide-maleic anhydride copolymer. Polymer 1996, 37, (19), 4389-4395.
87. Laschewsky, A.; Touillaux, R.; Hendlinger, P.; Vierengel, A., Characterization of sulfobetaine monomers by nuclear magnetic resonance spectroscopy: a note. Polymer 1995, 36, (15), 3045-3049.
88. Weers, J. G.; Rathman, J. F.; Axe, F. U.; Crichlow, C. A.; Foland, L. D.; Scheuing, D. R.; Wiersema, R. J.; Zielske, A. G., Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir 1991, 7, (5), 854-867.
89. Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas, J. J.; Soni, L.; Handwerker, B.; Garner, R. T., Phase behaviour and solution properties of sulphobetaine polymers. Polymer 1986, 27, (11), 1734-1742.
90. Huglin, M. B.; Radwan, M. A., Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-dimethyl-N-3-sulfopropylammonium betaine] in dilute solution. Die Makromolekulare Chemie 1991, 192, (10), 2433-2445.
91. Georgiev, G. S.; Kamenska, E. B.; Vassileva, E. D.; Kamenova, I. P.; Georgieva, V. T.; Iliev, S. B.; Ivanov, I. A., Self-Assembly, Antipolyelectrolyte Effect, and Nonbiofouling Properties of Polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
92. Wang, D. A.; Ji, J.; Gao, C. Y.; Yu, G. H.; Feng, L. X., Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications. Biomaterials 2001, 22, (12), 1549-1562.
93. Cao, L.; Chang, M.; Lee, C. Y.; Castner, D. G.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A., Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. Journal of Biomedical Materials Research Part A 2007, 81A, (4), 827-837.
94. Cao, L.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A., Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion. Journal of Biomedical Materials Research Part A 2006, 79A, (4), 788-803.
95. Zhang, M.; Horbett, T. A., Tetraglyme coatings reduce fibrinogen and von Willebrand factor adsorption and platelet adhesion under both static and flow conditions. Journal of Biomedical Materials Research Part A 2009, 89A, (3), 791-803.
96. Lee, J. H.; Lee, H. B.; Andrade, J. D., Blood Compatibility of Polyethylene Oxide Surfaces. Progress in Polymer Science 1995, 20, (6), 1043-1079.
97. Amiji, M.; Park, K., Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 1992, 13, (10), 682-692.
98. Prestidge, C. A.; Barnes, T.; Simovic, S., Polymer and particle adsorption at the PDMS droplet-water interface Advances in Colloid and Interface Science 2004, 108-109, 105-118
99. Lee, J.; Martic, P. A.; Tan, J. S., Protein Adsorption on Pluronic Copolymer-Coated Polystyrene Particles. Journal of Colloid and Interface Science 1989, 131, (1), 252-266.
100. Kayes, J. B.; Rawlins, D. A., Adsorption Characteristics of Certain Polyoxyethylene-Polyoxypropylene Block Co-Polymers on Polystyrene Latex. Colloid and Polymer Science 1979, 257, (6), 622-629.
101. Tan, J. S.; Martic, P. A., Protein Adsorption and Conformational Change on Small Polymer Particles. Journal of Colloid and Interface Science 1990, 136, (2), 415-431.
102. Tan, J. S.; Butterfield, D. E.; Voycheck, C. L.; Caldwell, K. D.; Li, J. T., Surface Modification of Nanoparticles by Peo Ppo Block-Copolymers to Minimize Interactions with Blood Components and Prolong Blood-Circulation in Rats. Biomaterials 1993, 14, (11), 823-833.
103. Elbert, D. L.; Hubbell, J. A., Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chemistry & Biology 1998, 5, (3), 177-183.
104. Huang, P. Y.; Hellums, J. D., Aggregation and disaggregation kinetics of human blood platelets: Part I. Development and validation of a population balance method. Biophysical Journal 1993, 65, (1), 334-343.
105. Malmsten, M.; Emoto, K.; Van Alstine, J. M., Effect of Chain Density on Inhibition of Protein Adsorption by Poly(ethylene glycol) Based Coatings. Journal of Colloid and Interface Science 1998, 202, (2), 507-517.
106. Amirpour, M. L.; Ghosh, P.; Lackowski, W. M.; Crooks, R. M.; Pishko, M. V., Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold. Analytical Chemistry 2001, 73, (7), 1560-1566.
107. Park, J. Y.; Acar, M. H.; Akthakul, A.; Kuhlman, W.; Mayes, A. M., Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials 2006, 27, (6), 856-865.
108. Akizawa, T.; Kino, K.; Koshikawa, S.; Ikada, Y.; Kishida, A.; Yamashita, M.; Imamura, K., Efficiency and biocompatibility of a polyethylene glycol grafted cellulosic membrane during hemodialysis. ASAIO Transactions 1989, 35, (3), 333-335.
109. Kishida, A.; Mishima, K.; Corretge, E.; Konishi, H.; Ikada, Y., Interactions of poly(ethylene glycol)-grafted cellulose membranes with proteins and platelets. Biomaterials 1992, 13, (2), 113-118.
110. Lee, J. H.; Jeong, B. J.; Lee, H. B., Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. Journal of Biomedical Materials Research 1997, 34, (1), 105-114.
111. Sheu, M. S.; Hoffman, A. S.; Feijen, J., A Glow-Discharge Treatment to Immobilize Poly(Ethylene Oxide) Poly(Propylene Oxide) Surfactants for Wettable and Nonfouling Biomaterials. Journal of Adhesion Science and Technology 1992, 6, (9), 995-1009.
112. Sheu, M. S.; Hoffman, A. S.; Ratner, B. D.; Feijen, J.; Harris, J. M., Immobilization of Polyethylene Oxide Surfactants for Non-Fouling Biomaterial Surfaces Using an Argon Glow-Discharge Treatment. Journal of Adhesion Science and Technology 1993, 7, (10), 1065-1076.
113. Cao, L.; Chang, M.; Lee, C. Y.; Castnet', D. G.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A., Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. Journal of Biomedical Materials Research Part A 2007, 81A, (4), 827-837.
114. Cao, L.; Ratner, B. D.; Horbett, T. A., Plasma deposition of tetraglyme inside small diameter tubing: Optimization and characterization. Journal of Biomedical Materials Research Part A 2007, 81A, (1), 12-23.
115. Lopez, G. P.; Ratner, B. D.; Tidwell, C. D.; Haycox, C. L.; Rapoza, R. J.; Horbett, T. A., Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. Journal of Biomedical Materials Research 1992, 26, (4), 415-439.
116. Chang, Y.; Cheng, T. Y.; Shih, Y. J.; Lee, K. R.; Lai, J. Y., Biofouling-resistance expanded poly(tetrafluoroethylene) membrane with a hydrogel-like layer of surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein repulsions. Journal of Membrane Science 2008, 323, (1), 77-84.
117. Chang, Y.; Ko, C. Y.; Shih, Y. J.; Quemener, D.; Deratani, A.; Wei, T. C.; Wang, D. M.; Lai, J. Y., Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science 2009, 345, (1-2), 160-169.
118. Chang, Y.; Shih, Y. J.; Ruaan, R. C.; Higuchi, A.; Chen, W. Y.; Lai, J. Y., Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science 2008, 309, (1-2), 165-174.
119. Tugulu, S.; Klok, H.-A., Stability and Nonfouling Properties of Poly(poly(ethylene glycol) methacrylate) Brushes under Cell Culture Conditions. Biomacromolecules 2008, 9, (3), 906-912.
120. Tugulu, T.; Klok, H.-A., Surface modification of polydimethylsiloxane substrates with nonfouling poly(poly(ethylene glycol)methacrylate) brushes. Macromolecular Symposia 2009, 279, (1), 103-109.
121. Stadler, V.; Kirmse, R.; Beyer, M.; Breitling, F.; Ludwig, T.; Bischoff, F. R., PEGMA/MMA Copolymer Graftings: Generation, Protein Resistance, and a Hydrophobic Domain. Langmuir 2008, 24, (15), 8151-8157.
122. Qiu, Y. X.; Klee, D.; Pluster, W.; Severich, B.; Hocker, H., Surface modification of polyurethane by plasma-induced graft polymerization of poly(ethylene glycol) methacrylate. Journal of Applied Polymer Science 1996, 61, 2373-2382.
123. Zou, X. P.; Kang, E. T.; Neoh, K. G., Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption. Surface and Coatings Technology 2002, 149, (2-3), 119-128.
124. Chen, J.; Nho, Y. C.; Kwon, O. H.; Hoffman, A. S., Grafting copolymerization of polyethylene glycol methacrylate (PEGMA) onto preirradiated PP films Journal of Radioanalytical and Nuclear Chemistry 1999, 240, (3), 943-948.
125. Kwon, O. H.; Nho, Y. C.; Park, K. D.; Kim, Y. H., Graft copolymerization of polyethylene glycol methacrylate onto polyethylene film and its blood compatibility. Journal of Applied Polymer Science 1999, 71, (4), 631-641.
126. Nho, Y. C.; Kwon, O. H., Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film. Radiation Physics and Chemistry 2003, 66, (4), 299-307.
127. Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L., Modification of Si(100) surface by the grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. Journal of Biomedical Materials Research 2001, 56, 324-332.
128. Lin, J. C.; Chuang, W. H., Synthesis, surface characterization, and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality. Journal of Biomedical Materials Research 2000, 51, (3), 413-423.
129. Huangfu, P. B.; Gong, M.; Zhang, C.; Yang, S.; Zhao, J.; Gong, Y. K., Cell outer membrane mimetic modification of a cross-linked chitosan surface to improve its hemocompatibility. Colloids and Surfaces B: Biointerfaces 2009, 71, (2), 268-274.
130. Ma, H.; Hyun, J.; Stiller, P.; Chilkoti, A., “Non-Fouling” Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Advanced Materials 2004, 16, (4), 338-341.
131. Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, (5330), 1232-1237.
132. Picart, C., Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Current Medicinal Chemistry 2008, 15, (7), 685-697.
133. Tsai, W. B.; Chen, R. P.; Wei, K. L.; Chen, Y. R.; Liao, T. Y.; Liu, H. L.; Lai, J. Y., Polyelectrolyte multilayer films functionalized with peptides for promoting osteoblast functions. Acta Biomaterialia 2009, 5, (9), 3467-3477.
134. Tsai, W. B.; Chen, Y. H.; Chien, H. W., Collaborative cell-resistant properties of polyelectrolyte multilayer films and surface PEGylation on reducing cell adhesion to cytophilic surfaces. Journal of Biomaterials Science-Polymer Edition 2009, 20, (11), 1611-1628.
135. Salloum, D. S.; Olenych, S. G.; Keller, T. C. S.; Schlenoff, J. B., Vascular smooth muscle cells on polyelectrolyte multilayers: Hydrophobicity-directed adhesion and growth. Biomacromolecules 2005, 6, (1), 161-167.
136. Olenych, S. G.; Moussallem, M. D.; Salloum, D. S.; Schlenoff, J. B.; Keller, T. C. S., Fibronectin and cell attachment to cell and protein resistant polyelectrolyte surfaces. Biomacromolecules 2005, 6, (6), 3252-3258.
137. Sugawara, T.; Matsuda, T., Photochemical Protein Fixation on Polymer Surfaces via Derivatized Phenyl Azido Group. Langmuir 1995, 11, (6), 2272-2276.
138. Tsuzuki, S.; Wada, A.; Ito, Y., Photo-immobilization of biological components on gold-coated chips for measurements using surface plasmon resonance (SPR) and a quartz crystal microbalance (QCM). Biotechnology and Bioengineering 2009, 102, (3), 700-707.
139. Rusmini, F.; Zhong, Z.; Feijen, J., Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 2007, 8, (6), 1775-1789.
140. Schuster, G. B.; Platz, M. S., Photochemistry of Phenyl Azide. In Advances in Photochemistry, John Wiley & Sons, Inc.: 2007; pp 69-143.
141. Ito, Y.; Hasuda, H.; Sakuragi, M.; Tsuzuki, S., Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomaterialia 2007, 3, (6), 1024-1032.
142. Sakuragi, M.; Tsuzuki, S.; Obuse, S.; Wada, A.; Matoba, K.; Kubo, I.; Ito, Y., A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. Materials Science and Engineering: C 2010, 30, (2), 316-322.
143. Mao, C.; Qiu, Y.; Sang, H.; Mei, H.; Zhu, A.; Shen, J.; Lin, S., Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science 2004, 110, (1-2), 5-17.
144. Chien, H. W.; Chang, T. Y.; Tsai, W. B., Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials 2009, 30, (12), 2209-2218.
145. Khorasani, M. T.; MoemenBellah, S.; Mirzadeh, H.; Sadatnia, B., Effect of surface charge and hydrophobicity of polyurethanes and silicone rubbers on L929 cells response. Colloids and Surfaces B: Biointerfaces 2006, 51, (2), 112-119.
146. Tsai, W. B.; Shi, Q.; Grunkemeier, J. M.; McFarland, C.; Horbett, T. A., Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. Journal of biomaterials science-Polymer edition 2004, 15, (7), 817-840.
147. Grunkemeier, J. M.; Tsai, W. B.; Alexander, M. R.; Castner, D. G.; Horbett, T. A., Platelet adhesion and procoagulant activity induced by contact with radiofrequency glow discharge polymers: Roles of adsorbed fibrinogen and vWF. Journal of Biomedical Materials Research 2000, 51, (4), 669-679.
148. Chien, H. W.; Wu, S. P.; Kuo, W. H.; Wang, M. J.; Lee, C.; Lai, J. Y.; Tsai, W. B., Modulation of hemocompatibility of polysulfone by polyelectrolyte multilayer films. Colloids and Surfaces B: Biointerfaces 2010, 77, (2), 270-278
149. Kent, N.; Basabe-Desmonts, L.; Meade, G.; MacCraith, B.; Corcoran, B.; Kenny, D.; Ricco, A., Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomedical Microdevices 2010, 12, (6), 987-1000.
150. Ravi, P.; Dai, S.; Tam, K. C., Synthesis and self-assembly of [60]fullerene containing sulfobetaine polymer in aqueous solution. Journal of Physical Chemistry B 2005, 109, (48), 22791-22798.
151. Guo, G.; Qin, F.; Yang, D.; Wang, C.; Xu, H.; Yang, S., Synthesis of platinum nanoparticles supported on poly(acrylic acid) grafted MWNTs and their hydrogenation of citral. Chemistry of Materials 2008, 20, (6), 2291-2297.
152. Gui, Z.; Qian, J.; Du, B.; Yin, M.; An, Q., Fabrication of free-standing polyelectrolyte multilayer films: A method using polysulfobetaine-containing films as sacrificial layers. Journal of Colloid and Interface Science 2009, 340, (1), 35-41.
153. Srinivasan, S.; Sawyer, P., Correlation of the surface charge characteristics of polymers with their antithrombogenic characteristics. Journal of Macromolecular Science 1970, A4, (3), 545-560.
154. Santerre, J. P.; ten Hove, P.; VanderKamp, N. H.; Brash, J. L., Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: Possible correlation with anticoagulant behavior. Journal of Biomedical Materials Research 1992, 26, (1), 39-57.
155. Ito, Y.; Iguchi, Y.; Kashiwagi, T.; Imanishi, Y., Synthesis and nonthrombogenicity of polyetherurethaneurea film grafted with poly(sodium vinyl sulfonate). Journal of Biomedical Materials Research 1991, 25, (11), 1347-1361.
156. Okkema, A. Z.; Visser, S. A.; Cooper, S. I., Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. Journal of Biomedical Materials Research 1991, 25, (11), 1371-1395.
157. Poussard, L.; Burel, F.; Couvercelle, J. P.; Merhi, Y.; Tabrizian, M.; Bunel, C., Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Biomaterials 2004, 25, (17), 3473-3483.
158. Poussard, L.; Burel, F.; Couvercelle, J. P.; Lesouhaitier, O.; Merhi, Y.; Tabrizian, M.; Bunel, C., In vitro thrombogenicity investigation of new water-dispersible polyurethane anionomers bearing carboxylate groups. Journal of Biomaterials Science-Polymer Edition 2005, 16, (3), 335-351.
159. Chuang, W. H.; Lin, J. C., Surface characterization and platelet adhesion studies for the mixed self-assembled monolayers with amine and carboxylic acid terminated functionalities. Journal of Biomedical Materials Research Part A 2007, 82A, (4), 820-830.
160. Grunkemeier, J. M.; Tsai, W. B.; Horbett, T. A., Co-adsorbed fibrinogen and von Willebrand factor augment platelet procoagulant activity and spreading. Journal of Biomaterials Science-Polymer Edition 2001, 12, (1), 1-20.
161. Sperling, C.; Fischer, M.; Maitz, M. F.; Werner, C., Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009, 30, (27), 4447-4456.
162. Tsai, W. B.; Grunkemeier, J. M.; Horbett, T. A., Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. Journal of Biomedical Materials Research 1999, 44, (2), 130-139.
163. Wu, Y.; Simonovsky, F. I.; Ratner, B. D.; Horbett, T. A., The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research 2005, 74, (4), 722-738.
164. Wu, Y.; Zhang, M.; Hauch, K. D.; Horbett, T. A., Effect of adsorbed von Willebrand factor and fibrinogen on platelet interactions with synthetic materials under flow conditions. Journal of Biomedical Materials Research 2008, 85A, (3), 829-839.
165. Gui, Z.; Qian, J.; An, Q.; Xu, H.; Zhao, Q., Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. European Polymer Journal 2009, 45, (5), 1403-1411.
166. Karanikolopoulos, N.; Pitsikalis, M.; Hadjichristidis, N.; Georgikopoulou, K.; Calogeropoulou, T.; Dunlap, J. R., PH-responsive aggregates from double hydrophilic block copolymers carrying zwitterionic groups. Encapsulation of antiparasitic compounds for the treatment of leishmaniasis. Langmuir 2007, 23, (8), 4214-4224.
167. Mendelsohn, J. D.; Yang, S. Y.; Hiller, J.; Hochbaum, A. I.; Rubner, M. F., Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 2003, 4, (1), 96-106.
168. Elzbieciak, M.; Zapotoczny, S.; Nowak, P.; Krastev, R.; Nowakowska, M.; Warszynski, P., Influence of pH on the structure of multilayer films composed of strong and weak polyelectrolytes. Langmuir 2009, 25, (5), 3255-3259.
169. Jones, J. A.; Novo, N.; Flagler, K.; Pagnucco, C. D.; Carew, S.; Cheong, C.; Kong, X. Z.; Burke, N. A. D.; Stover, H. D. H., Thermoresponsive copolymers of methacrylic acid and poly(ethylene glycol) methyl ether methacrylate. Journal of Polymer Science: Part A: Polymer Chemistry 2005, 43, (23), 6095-6104.
170. Serra, L.; Domenech, J.; Peppas, N. A., Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics 2006, 63, (1), 11-18.
171. Maroudas, N. G., Polymer exclusion, cell adhesion and membrane fusion. Nature 1975, 254, (5502), 695-696.
172. Kulik, E.; Ikada, Y., In vitro platelet adhesion to nonionic and ionic hydrogels with different water contents. Journal of Biomedical Materials Research 1996, 30, (3), 295-304.
173. Konno, T.; Hasuda, H.; Ishihara, K.; Ito, Y., Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials 2005, 26, (12), 1381-1388.
174. Hasuda, H.; Kwon, O. H.; Kang, I. K.; Ito, Y., Synthesis of photoreactive pullulan for surface modification. Biomaterials 2005, 26, (15), 2401-2406.
175. Sagle, A. C.; Ju, H.; Freeman, B. D.; Sharma, M. M., PEG-based hydrogel membrane coatings. Polymer 2009, 50, (3), 756-766.
176. Gutierrez, E.; Petrich, B. G.; Shattil, S. J.; Ginsberg, M. H.; Groisman, A.; Kasirer-Friede, A., Microfluidic Devices for Studies of Shear-Dependent Platelet Adhesion. Lab on a Chip 2008, 8, (9), 1486-1495.
177. Kurotobi, K.; Yamamoto, A.; Kikuta, A.; Hanawa, T., Short term evaluation of material blood compatibility using a microchannel array. Journal of Materials Science: Materials in Medicine 2007, 18, (6), 1175-1184.
178. Minelli, C.; Kikuta, A.; Yamamoto, A., A micro-fluidic technique for the evaluation of the blood compatibility of nanostructured polymer surfaces. Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology 2006, 240-243.
179. Strony, J.; Beaudoin, A.; Brands, D.; Adelman, B., Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. American Journal of Physiology 1993, 265, H1787-H1796.
180. Siegel, J. M.; Markou, C. P.; Ku, D. N.; Hanson, S. R., A Scaling Law for Wall Shear Rate Through an Arterial Stenosis. Journal of Biomechanical Engineering 1994, 116, (4), 446-451.
181. Sadler, J. E., Biochemistry and genetics of von Willebrand factor. Annual Review of Biochemistry 1998, 67, (1), 395-424.
182. Frojmovic, M., Handbook of platelet physiology and pharmacology. Kluwer Academic: Boston, MA, 1999.

無法下載圖示 全文公開日期 2016/10/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE