簡易檢索 / 詳目顯示

研究生: 劉恩廷
En-ting Liu
論文名稱: 運用超音波於硬脆材料之精密加工之發展與評估
Preliminary Development and Assessment of Using Ultrasonic Vibration in Precision Machining of Brittle Materials
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 陳國聲
none
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 70
中文關鍵詞: 超音波加工硬脆材料精密製造研磨液
外文關鍵詞: Ultrasonic machining, brittle and hard materials, abrasive slurry, production accuracy
相關次數: 點閱:213下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的超音波加工一直被認為是精密度不高的加工法,而雷射加工是大家普遍認為最理想的選擇,但此加工法
    在工件周圍會有熱影響區發生,而且也會產生切削後之殘留應力,因此周圍的地方是無法被應用的,所以我們提出
    超音波切削加工,只要能適當的控制參數,切割出來的品質絕對可以比雷射加工還優秀,許多人認為超音波加工
    速度較慢,但刀具是可以經過設計的,只要刀具上製作數百個孔,一個批次切削會來得比雷射加工還快上許多。

    本實驗主要研究超音波加工技術的精確性與精密度,分別探討以磨料粒徑尺寸的不同、濃度的多寡及振幅的大小觀察它們的表面
    劈裂程度,從中歸納出幾項準則:粒徑大小主導邊緣破損大小程度;而濃度的高低控制邊緣破裂的多寡,以及
    適當的振幅必須匹配適當的粒徑,才能產生絕佳的表面品質;另外曲率愈小,磨料在刀具上的排列會變得比較密不容易有空隙,
    所排列會和刀具幾何形狀相類似,表面粗糙度會比較佳。


    Ultrasonic machining is considered as one of the machining techniques with low accuracy and precision in the past.
    Laser drilling is the preferred method instead. However, laser drilling suffers from the thermally damaged region
    and the residual stresses associated with the high intensity energy focused on workpiece. With proper control of process
    parameters, the quality of ultrasonic machining can be even better than that of laser drilling. Although the speed of
    laser drilling in machining a single hole is much faster than that of ultrasonic machining, batch fabrication of ultrasonic
    machining can be easily achieved via appropriate design of the cutting tool. Hundreds of holes can be machined at a signle run
    and the machining rate is then much faster than that of laser drilling.

    The major effort of this work is focused on the experimental investigation of the accuracy and precision of ultrasonic
    machining. The influences of the process parameters such as the diameters and concentrations of the abrasive particles and the
    amplitudes of the ultrasonic vibration of the cutting tool on the surface profiles of the machined workpiece are studied. A few
    guidelines can be drawnd as follows: 1. The sizes of the abrasive particles determine the major scale of the irregular ridges on the
    undulate margin of the machined hole. Large but sporadic protuberances occur stochastically. 2. The concentrations of abrasives
    in slurry correlate with the quality of surface profiles positively. 3. Excellent surface profiles can be achieved by
    proper matching of abrasive size and vibration amplitude of cutting tool. 4. Better quality of surface profiles can be obtained for
    holes with larger radial of curvature.

    目錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 緒論1 1.1 前言及研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 超音波加工原理5 2.1 超音波加工的特性. . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 超音波加工機設備之組成. . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 超音波振盪器. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 超音波振動系統. . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 機台本體. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 磨料的供應. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 超音波加工之基本參數. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 影響加工速度的因素. . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 影響加工精度的因素. . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 影響加工表面的因素. . . . . . . . . . . . . . . . . . . . . . 17 3 系統設計與建造18 3.1 壓電振動子與變幅桿. . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 缽之設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 刀具製作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 研磨液與循環系統. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 試片的準備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 實驗結果與分析30 4.1 原型機的性能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 刀具的磨耗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 磨料大小的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 濃度的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5 振幅的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6 刀具尺寸的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.7 背面邊崩. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 結論及未來發展40 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 未來發展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A 附錄43 A.1 實驗裝置設計圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    參考文獻
    [1] R. W. Wood, and Loomis, ”The Physical and Biological Effects of High Frequence
    Sound Waves of Great Intensity” , Philosophical Magazine, Vol. 7, pp.
    417-436 ,1927.
    [2] 島川正憲著, 賴耿陽譯, 超音波工學理論實務, 復漢出版社有限公司,2001
    [3] H. L. Rutan, ”Ultrasonic Machining” , Optical Fabrication and Test , Montere,
    Calif, work performed for the U.S. Department of Energy by the
    Univ.Calif., Lawrence Livermore National Laboratory, 1984.
    [4] M. Adithan, ”Abrasive wear in ultrasonic drilling” , TRIBOLOGY international
    , Vol. 16 , PP. 5 ,1983
    [5] 王軍, 萬珍平, ”基於玻璃小孔的超聲波加工實驗研究” , 機械製造47 卷第
    533 期,2009
    [6] L. D. Rozenberg, and V. F. Kazantsev, ” Ultrasonic Cutting ” , Consultants
    Bureau, New York,1964.
    [7] M. Adithan, and V. C. Venkatesh, ”Production accuracy of holes in ultrasonic
    drilling” , Wear , 40 , 309-318 , 1976.
    [8] E.A. Neppiras 1953 “A high-frequency reciprocating drill”, Journal of Scientific
    Instruments, 30, 72–74.
    [9] E.A. Neppiras 1960 “Very high energy ultrasonics”, British Journal of Applied
    Physics, 11, 143–150.
    [10] E.A. Neppiras 1964 “Ultrasonic machining and forming”, Ultrasonics, 2,
    167–173.
    [11] V.F. Kazantsev & L.D. Rosenberg 1965 “The mechanism of ultrasonic
    cutting”, Ultrasonics, 3, 166–174.
    [12] L. Balamuth 1966 “Ultrasonic assistance to conventional metal removal”,
    Ultrasonics, 4, 125–130.

    [13] K.F. Graff 1975 “Macrosonics in industry, 5. Ultrasonic machining”, Ultrasonics,
    13, 103–109.
    [14] M. Komaraiah, M.A. Manan, P. N. Reddy, & S. Victor 1988 “Investigation
    of surface roughness and accuracy in ultrasonic machining”, Precision
    Engineering, 10(2), 59–65.
    [15] R. Gilmore 1991 “Ultrasonic machining: a case study”, Journal of Materials
    Processing Technology, 28, 139–148.
    [16] V.I. Babitsky, V.K. Astashev, & A.N. Kalashnikov 2004 “Autoresonant
    control of nonlinear mode in ultrasonic transducer for machining applications”,
    Ultrasonics, 42, 29–35.
    [17] T.B. Thoe, D.K. Aspinwall, & M.L.H. Wise 1998 “Review on ultrasonic
    machining”, International Journal of Machine Tools and Manufacture,
    38(4), 239–255.
    [18] D.E. Brehl & T.A. Dow 2008 “Review of vibration-assisted machining”,
    Precision Engineering, 32(8), 153–172.
    [19] L. Balamuth & C. Kleesattel 1956 “Technical Demands of Ultrasonic
    Dental Instruments”, Journal of the Acoustical Society of America, 28, 779.
    [20] J.P. Choi, B.H. Jeon, & B.H. Kim 2007 “Chemical-assisted ultrasonic
    machining of glass”, Journal of Materials Processing Technology, 191, 153–
    156.
    [21] B. Azarhoushang, & J. Akbari 2007 “Ultrasonic-assisted drilling of Inconel
    738-LC”, International Journal of Machine Tools & Manufacture, 47,
    1027–1033.
    [22] M. Adithan & V.C. Venkatesh 1976 “Production accuracy of holes in
    ultrasonic drilling”, Wear, 40, 309–318.
    [23] M. Adithan 1974 “Tool wear studies in ultrasonic drilling”, Wear, 29, 81–
    93.
    [24] H. Dam, P. Quist, & M.P. Schreiber 1995 “Productivity, surface quality
    and tolerance in ultrasonic machining of ceramics”, Journal of Materials
    Processing Technology, 51, 358–368.
    [25] Y.Ichida, R. Sato, Y. Morimoto, & K. Kobayashi 2005 “Material
    removal mechanisms in non-contact ultrasonic abrasive machining”, Wear,
    258, 107–114.

    [26] V. Soundararajan & V. Radhakrishnan 1986 “An experimental investigation
    on the basic mechanisms involved in ultrasonic machining”, Int. J.
    Mach. Tool Des. Res., 26(3), 307–321.
    [27] D. Goetze 1956 “Effect of Vibration amplitude, frequency, and composition
    of the abrasive slurry on the rate of ultrasoni machining in Ketos tool steel”,
    Journal of the Acoustical Society of America, 28(6), 1033–1037.
    [28] A.B.E. Khairy 1990 “Assessment of some dynamic parameters for the ultrasonic
    machining process”, Wear, 137, 187–198.
    [29] 許坤明, 非傳統加工, 全華科技圖書有限公司,2005
    [30] 陳熹棣, 高週波基礎理論與應用, 全華科技圖書有限公司,1995
    [31] E. J. Weller 著, 張浮明張瑞慶周志忠譯, 非傳統加工第三版, 高立圖書有
    限公司,2008
    [32] K. P. Rajurkar, Z. Y. Wang, A. Kuppattan, ”Micro removal of ceramic material
    (Al2O3) in the precision ultrasonic machining” , Precision Engineering,
    Vol. 23, pp. 73-78 ,1999.
    [33] 詹易築, ”超音波微細加工硬脆材料之研究” , 碩士論文, 國防大學中正理工
    學院兵器系統工程研究所, 桃園,2002。
    [34] 曾仲盟, ”超音波加工微結構之研究” , 碩士論文, 國防大學中正理工學院兵
    器系統工程研究所, 桃園,2004。
    [35] 卓益淵, ”微細孔超音波加工設備研製與製程參數最佳化分析” , 碩士論文,
    國立臺北科技大學, 台北,2004
    [36] 馬嘉駿, ”迴轉式超音波輔助硬脆材料銑削及工具設計” , 碩士論文, 國立臺
    北科技大學, 台北,2006。

    QR CODE