簡易檢索 / 詳目顯示

研究生: 徐彥喬
Yen-Chiao Hsu
論文名稱: 表面電洞聚集效應在二硫化鎢單晶之光電導特性探討
Surface Hole Accumulation Effect on Photoconductivities of WS2 Single Crystals
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳瑞山
Ruei-San Chen
李奎毅
Kuei-Yi Li
徐旭政
Xu-Zheng Hsu
黃逸帆
Yi-Fan Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 表面電洞聚集二硫化鎢層狀半導體光電流反應高時間解析光電導載子活期
外文關鍵詞: Surface Hole Accumulation
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文主要探討表面電洞聚集效應在二硫化鎢(WS2)層狀半導體單晶光電導特性上的作用。實驗上透過比較具有原始表面(Non-fresh surface)與新撕表面(Fresh surface) WS2單晶的光電導特性差異以瞭解其物理機制。首先在原始表面WS2單晶受到波長638 nm的雷射照射後,可以看到分別存在著快速及慢速段的光電流反應。由功率相依的高時間解析光電導(TRPC)量測指出原始表面WS2單晶快速段的反應時間(載子活期)落在38 ~ 118 μs。進一步透過溫度相依TRPC量測,可證明原始表面WS2的快速反應段是由表面能帶彎曲所主導。另一方面,在新撕表面WS2也可以觀察到有類似的兩段光電流反應,其快速段反應時間(10 ~ 22 μs)快於原始表面樣品,溫度相依TRPC量測也觀察到不一樣的活化能,顯示確實有移除掉表面的電洞聚集,使得表面能帶彎曲變弱。相對於原始表面WS2,新撕表面樣品表現出較接近本質半導體的特性(能帶間非直接能隙復合)。上述的能帶彎曲效應也可以解釋為何在原始表面的慢速反應段(1 ~ 60 s)的載子活期會遠長於新撕表面的WS2。


    This thesis primarily investigates the effect of surface hole accumulation (SHA) on photoconduction properties in single-crystal tungsten disulfide (WS2) to explore whether it allows the material to approach its true intrinsic characteristics. The WS2 crystals with two different surface conditions including the pristine old surface (non-fresh surface with SHA) and the newly exfoliated surface (fresh surface without SHA) were compared and investigated. Upon irradiation with a wavelength of 638 nm, the WS2 with non-fresh surface exhibits the photocurrent response comprising a fast and a slow components. Power-dependent time-resolved photoconductivity (TRPC) measurements reveal that the response time (carrier lifetime) of the fast component in the non-fresh surface WS2 are in the range of 38~118 μs. Temperature-dependent TRPC measurements show that the fast response component of the non-fresh surface sample is dominated by the surface band bending (SBB) induced by SHA.
    On the other hand, similar two-step photoresponse was also observed in the WS2 with fresh surface. The response time of the fast component in the fresh WS2 at 10~22 μs are higher than that of the non-fresh samples. Temperature-dependent TRPC measurements further reveal a lower activation energy in the fresh samples. These results all indicate the SHA layer or SBB has been successfully removed or diminished. The WS2 with the fresh surface exhibits an nearly intrinsic semiconductor nature. The proposed model based on the SHA effect also explains the distinct photoresponse behaviors of the slow component in fresh and non-fresh WS2.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 表面電洞聚集效應 (Surface Hole Accumulation, SHA) 4 第二章 樣品介紹 8 2.1 二硫化鎢層狀晶體成長 8 2.2 二硫化鎢晶體結構與基本特性 10 第三章 實驗方法與原理 12 3.1 二硫化鎢晶體檢測 12 3.1.1 拉曼散射光譜儀 (Raman Scattreing Spectroscopy) 12 3.1.2 薄膜厚度輪廓測量儀 (α-step) 16 3.2 二硫化鎢層狀半導體塊材元件製作 19 3.2.1 元件基板製作 19 3.2.2 晶體定位以及遮罩製作 21 3.2.3 直流磁控濺鍍法 (DC Magnetron Sputter) 22 3.2.4 漆包線接合 25 3.3 二硫化鎢元件之暗電導量測 27 3.3.1 電流對電壓曲線量測 (Current-Voltage measurement, I-V measurement) 27 3.4 二硫化鎢元件之光電導量測 29 3.4.1 功率相依之光電導量測 (Power-dependent Photoconductivity measurement) 29 3.4.2 環境變化之光電導量測 (Ambience-dependent Photocurrent measurement) 30 3.5 二硫化鎢元件之高時間解析光電導量測 31 3.5.1 功率相依之高時間解析光電導量測 (Power-dependent High-frequency Time-resolved Photoconductivity measurement) 31 3.5.2 環境變化與溫度變化之高時間解析光電導量測 (Ambience-dependent and Temperature-dependent High-frequency Time-resolved Photoconductivity measurement) 35 第四章 結果與討論 39 4.1 二硫化鎢單晶晶體結構分析 39 4.1.1 二硫化鎢單晶晶體之拉曼散射光譜 39 4.1.2 二硫化鎢單晶晶體之厚度量測 41 4.2 二硫化鎢單晶晶體之暗電導分析 42 4.2.1 原始表面二硫化鎢單晶(Non-fresh WS2)晶體之電導率量測 42 4.2.2 新撕表面二硫化鎢單晶(Fresh WS2)晶體之電導率量測 43 4.2.3 二硫化鎢單晶晶體溫度相依之暗電導分析 46 4.3 二硫化鎢單晶晶體之高時間解析光電導分析 53 4.3.1 二硫化鎢單晶晶體功率相依之載子活期分析 54 4.3.2 二硫化鎢單晶晶體溫度相依之載子活期分析 58 4.3.3 二硫化鎢單晶晶體環境變化之載子活期分析 63 4.4 二硫化鎢單晶晶體之光電導分析 66 4.4.1 二硫化鎢單晶晶體之功率相依光電導分析 67 4.4.2 二硫化鎢單晶晶體之環境相依光電導分析 72 第五章 結論 77 參考文獻 78

    1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
    2. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005. 102(30): p. 10451-10453.
    3. Reddy, J., A generalization of two‐dimensional theories of laminated composite plates. Communications in applied numerical methods, 1987. 3(3): p. 173-180.
    4. Manzeli, S., et al., 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8): p. 1-15.
    5. Dzyaloshinskii, I.E., E.M. Lifshitz, and L.P. Pitaevskii, The general theory of van der Waals forces. Advances in Physics, 1961. 10(38): p. 165-209.
    6. Zhou, W., et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano letters, 2013. 13(6): p. 2615-2622.
    7. Kang, M., et al., Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides. Nano Letters, 2017. 17(3): p. 1610-1615.
    8. Lv, R., et al., Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015. 48(1): p. 56-64.
    9. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B, 2012. 85(3): p. 033305.
    10. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide T S2. Physical Review B, 2011. 83(24): p. 245213.
    11. Kam, K.K. and B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 1982. 86(4): p. 463-467.
    12. Braga, D., et al., Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano letters, 2012. 12(10): p. 5218-5223.
    13. Sliney, H.E., Solid lubricant materials for high temperatures—a review. Tribology International, 1982. 15(5): p. 303-315.
    14. Hong, X., et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014. 9(9): p. 682-686.
    15. Huo, N., et al., Tunable polarity behavior and self‐driven photoswitching in p‐WSe2/n‐WS2 heterojunctions. Small, 2015. 11(40): p. 5430-5438.
    16. Valizadeh, A., et al., Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale research letters, 2012. 7: p. 1-14.
    17. Chiang, T.-C., Photoemission studies of quantum well states in thin films. Surface Science Reports, 2000. 39(7-8): p. 181-235.
    18. Adachi, M., et al., Control of Nano Structure by Multi Films for Nano-structured Thermoelectric Materials. SEI Tech. Rev, 2017. 84: p. 151-155.
    19. 沈韋竹,「二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性」,2015,國立臺灣科技大學光電工程研究所碩士學位論文。
    20. 何沁蓉,「二硫化鉬及二硒化鉬層狀半導體奈米結構之高頻時間解析光電導特性」,2019,國立臺灣科技大學應用科技研究所碩士學位論文。
    21. 郭佳紋,「單層二硫化鉬半導體之高頻時間解析光電導特性研究」,2021,國立臺灣科技大學應用科技研究所碩士學位論文。
    22. Siao, M.D., et al., Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature Communications, 2018. 9(1).
    23. Chang, Y.S., et al., Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes. Nano Energy, 2021. 84.
    24. Pong, W.-T. and C. Durkan, A review and outlook for an anomaly of scanning tunnelling microscopy (STM): superlattices on graphite. Journal of Physics D: Applied Physics, 2005. 38(21): p. R329.
    25. Damascelli, A., Probing the electronic structure of complex systems by ARPES. Physica Scripta, 2004. 2004(T109): p. 61.
    26. 朱煜文,「二硫化鎢層狀半導體之電子結構與電傳輸特性」,2019, 國立臺灣科技大學應用科技研究所碩士學位論文。
    27. 謝岳呈,「二硫化鎢單晶與單層奈米結構之光電導特性研究」,2023, 國立臺灣科技大學應用科技研究所碩士學位論文。
    28. Binnewies, M., et al., Chemical vapor transport reactions–A historical review. Zeitschrift für anorganische und allgemeine Chemie, 2013. 639(2): p. 219-229.
    29. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712.
    30. Kim, S.-Y., et al., Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate. 2D Materials, 2016. 4(1): p. 011007.
    31. Zhao, W., et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS nano, 2013. 7(1): p. 791-797.
    32. Toh, R.J., et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
    33. Pollak, F.H. and H. Shen, Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Materials Science and Engineering: R: Reports, 1993. 10(7-8): p. xv-374.
    34. 淺談拉曼光譜儀分析技術原理Raman spectroscopy-新國科技。 Available from: https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-39.html
    35. Breiman, L., Bias, variance, and arcing classifiers. 1996, Tech. Rep. 460, Statistics Department, University of California, Berkeley ….
    36. 王驊民,「二硫化鉬層狀半導體歐姆接觸探討」,2018,國立臺灣科技大學光電工程研究所碩士學位論文。
    37. Binet, F., et al., Mechanisms of recombination in GaN photodetectors. Applied Physics Letters, 1996. 69: p. 1202-1204.
    38. Lin, J., et al., Relaxation of persistent photoconductivity in Al0.3Ga 0.7As. Physical Review B, 1990. 42(9): p. 5855.
    39. Li, J.Z., et al., Nature of Mg impurities in GaN. Applied Physics Letters, 1996. 69(10): p. 1474-1476.
    40. Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013. 3(1).
    41. Zobeiri, H., et al., Effect of temperature on Raman intensity of nm-thick WS2: Combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale, 2020. 12(10): p. 6064-6078.
    42. Lan, C., et al., 2D WS2: from vapor phase synthesis to device applications. Advanced Electronic Materials, 2021. 7(7): p. 2000688

    無法下載圖示 全文公開日期 2026/08/07 (校內網路)
    全文公開日期 2026/08/07 (校外網路)
    全文公開日期 2026/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE