簡易檢索 / 詳目顯示

研究生: 宮輔辰
Fu-Chen Kung
論文名稱: 透析膜接枝共軛亞麻油酸或肝素對其血液相容性改進之探討
Effect of conjugated linoleic acid or heparin grafting on the hemocompatibility of hemodialyzer membranes.
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊禎明
Jen-Ming Yang
楊台鴻
Tai-Horng Young
王大銘
Da-Ming Wang
李振綱
Cheng-Kang Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 103
中文關鍵詞: 自由基抗氧化力中空纖維透析器血液相容性內毒素表面改質
外文關鍵詞: oxidative stress, endotoxin, platelet adhesion., lipopolysaccharide, Conjugated linoleic acid
相關次數: 點閱:313下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以高分子透析膜為基材(Cellulose acetate、Polysulfone、Polyacrylonitrile),表面改質後接枝抗凝血藥劑(肝素及共軛亞麻油酸),以改善中空纖維在臨床使用上的功能性。實驗進行以傅立葉轉換紅外光儀(FTIR)、X光電子能譜儀(XPS)分析經改質接枝後之薄膜表面特性的差異。此外接枝亞麻油酸的效能評估則以血液作為測試的主體,分析血液與薄膜接觸後其血小板吸附情形、凝血時間之變化、免疫反應之狀態以及血液中自由基變化之監測;實驗進行並使用ELISA對內毒素掃除的效率做一評估。最後並以HUVECs作為細胞培養的測試, 作為其生物相容性之評估。實驗結果顯示,接枝亞麻油酸能進一步改善其血液相容性、抗氧化力、避免補體活化的啟動、能有效清除內毒素等優點,在內毒素去除的效率上接枝共軛亞麻油酸後之PAN、CA及PSF膜其去除效率分別為未經改質透析膜之1.6、1.2及1.5倍,結果也顯示接枝共軛亞麻油酸在全血液檢查(CBC)中測定值與正常血液之測定值無太大變化,此外在自由基離子產生分析中,經改質接枝之透析膜並不會造成大量自由基離子的產生,反之未經改質之透析膜卻有明顯的自由機離子累積產生。本實驗結果顯示接枝共軛亞麻油酸能提高透析器之附加價值及其應用性。
    實驗第二階段接著將商業用中空纖維表面改質接枝肝素(heparin),以新鮮血漿做體外模擬測試,進一步評估此一接枝反應應用於中空纖維上的可行性。實驗進行對中空纖維之廓清率、凝血時間(APTT、PT、FT)、補體活化反應及全血液檢測(red blood cell (RBC)、hemoglobin (Hgb)、hematocrit (Hct) white blood cell、(WBC) 及 platelet)進行測試,結果顯示接之heparin不會改變其廓清率,且可以有效改善其抗凝血性、並有效去除內毒素以及提升其抗氧化力;本實驗結果可作為日後商品化之初步參考評估。


    In this study, hollow fiber membrane (PAN,CA and PSF) membrane was hydrolyzed and grafted with conjugated linoleic acid (CLA) via esterification with 1,3-propanediol. The resulting CLA grafting membranes were characterized with Fourier transform infrared spectrometer (FTIR) and X-ray photoelectronic spectroscopy (XPS). The effects of CLA grafting on the blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The complete blood count (CBC) and coagulation time (CT) was evaluated in vitro for the hemocompatibility. Furthermore, the removal of bacterial endotoxin (lipopolysaccharide, LPS) by CLA-bonding membrane was measured with ELISA. After CLA-grafting, the proliferation of human umbilical vein endothelial cells (HUVECs) on the membranes were improved. In addition, the production of reactive oxygen species (ROS) was measured by chemiluminescence (CL) method to evaluate the oxidative stress. The concentration of LPS can be reduced by CLA-bonding membrane of PAN, CA and PSF were 1.6, 1.2, 1.5 times more than unmodified one. The results showed that the CLA-grafting membrane could keep the CBC values more stable than unmodified membrane. The CLA-grafting membranes also showed longer CT. CLA-grafting membrane could keep the CL counts of hydrogen peroxide and superoxide values more stable than unmodified membrane. These results suggest that a CLA-grafting membrane could offer protection for patients against oxidative stress and would be helpful for reducing the dosage of anticoagulant during hemodialysis.
    Secondly, CLA or heparin was immobilized onto cellulose acetate hollow fiber to improve the anticoagulation performance during hemodialysis. In vitro evaluation was carried out using mini-hemodialyzer circulating with fresh porcine whole blood to simulating kidney therapy. The dialysis performance and hemocompatibility were estimated. The results showed that CLA-grafting or heparinized hemodialyzer could be used through out the whole dialysis time (4 hrs) without injecting additional heparin to prevent coagulation in the dialysis system. In addition, the hemocompatibility was evaluated by measuring activated partial thromboplastin time (APTT), prothrombin time (PT), and fibrinogen time (FT). The complete blood counts (CBC) including red blood cell (RBC), hemoglobin (Hgb), hematocrit (Hct), white blood cell (WBC), and platelet were determined. The results showed that CLA-grafting or heparinization could keep the CBC stable during dialysis, whereas unmodified cellulose acetate hemodialyzer would cause decrease in RBC unless heparin was injected during dialysis. CLA-grafting or heparinized hemodialyzer showed longer APTT, PT, and FT than unmodified hemodialyzer. CLA-grafting or heparinized hemodialyzer also showed slightly higher clearance than unmodified hemodialyzer. These results indicated that the dialysis performance and hemocompatibility of cellulose acetate hemodialyzer could be improved by the immobilization of heparin or CLA-grafting.

    摘要 I Abstract II Acknowledgement IV Contents V Figures VIII Tables X Chapter 1: Introduction 1 Chapter 2: Background and previous works 4 2.1. Hemodialyzer 4 2.2. Conjugated linoleic acid 5 2.3. Endotoxin 7 2.4. Blood coagulation 8 2.5. Blood counts 9 2.6. Complement system 10 2.7. Oxidative stress 11 2.8. Human Umbilical Vein Endothelial Cells 12 Chapter 3: The reduction of oxidative stress, anticoagulation of platelet, and inhibition of lipopolysaccharide by conjugated linoleic acid bonded on hemodialyzer membrane. 13 3.1. Motivation and objectives 13 3.2. Experimental procedures 14 3.2.1. Materials 14 3.2.2. Preparation of polyacrylonitrile membranes 14 3.2.3. Preparation of Flat-Sheet PSF Membrane 15 3.2.4. Preparation of cellulose acetate membranes 17 3.2.5. Characterization analysis 18 3.2.6. Measurement of water contact angle 18 3.2.7. Blood coagulation time 19 3.2.8. Grafting density of CLA 19 3.2.9. Complement test method 19 3.2.10. Determination of LPS level 20 3.2.11. Measurement of the level of reactive oxidants in plasma. 20 3.2.12. Cell proliferation assay 22 3.3. Result and discussion 22 3.3.1. The hydrophilicity of PAN membranes 22 3.3.2. PSF Ozone treatment 23 3.3.3. Surface characterization 24 3.3.4. Blood coagulation 30 3.3.5. Surface density of CLA 35 3.3.6. The complete blood count assay 38 3.3.7. Removal of LPS 40 3.3.8. Measurement of the level of reactive oxidants in plasma. 42 3.3.9. Complement activation 49 3.3.10. Cell proliferation 49 3.4. Conclusions 50 Chapter 4: In vitro evaluation of CA hemodialyzer immobilized with heparin. 51 4.1. Motivation and objectives 51 4.2. Experimental procedures 52 4.2.1. Oxidation of cellulose acetate dialyzer 52 4.2.2. Grafting of heparin 52 4.2.3. Stability Test 53 4.2.4. Surface density determination 54 4.2.5. Surface density of heparin 54 4.2.6. Dialyzing performance of hemodialyzers 54 4.2.7. Protein adsorption 55 4.2.8. Blood samples 56 4.2.9. Hemodialysis 56 4.2.10. Hematological Parameters 56 4.2.11. Blood coagulation time 57 4.2.12. Complement test method 57 4.3. Results and discussion 57 4.3.1. Oxidization of CA dialyzer 57 4.3.2. Stability of Immobilized Heparin 59 4.3.3. Surface density of heparin 60 4.3.4. Dialysis performance of hemodialyzers 62 4.3.5. Protein adsorption 62 4.3.6. The CBC assay of the dialysis system 64 4.3.7. Blood coagulation 72 4.3.8. Complement activation 77 4.4. Conclusions 77 Chapter 5: Overall conclusions and suggestions 78 5.1. Conclusions 78 5.2. Suggestions 79 References 81

    1. Tsuruta T, Hayashi T, Kataoka K, Ishihara K, Kimura Y, Biomedical Applications of Polymeric Materials. CRC Press, Boca Raton, FL, 1993
    2. Kolb G, Fischer W, Seitz R, Hemodialysis and blood coagulation: the effect of hemodialysis on coagulation factor XIII and thrombin-antithrombin III complex. Nephron., 1991, 58, 106-108(B).
    3. Ishii Y, Yano S, Kanai H, Evaluation of blood coagulation-fibrinolysis system in patients receiving chronic hemodialysis. Nephron., 1996, 73, 407-412(B).
    4. Payne MS, Horbett TA. Complement activation by hydroxyethylmethacrylate ethylmethacrylate copolymers. J Biomed Mater Res., 1987, 21, 843–859.
    5. Liu L, Elwing H. Complement activation on solid surfaces as determined by C3 deposition and hemolytic consumption. J Biomed Mater Res., 1994, 28, 767–773.
    6. Elwing H, Nilsson B, Svensson KE, Askendahl A, Nilsson UR,Lundstrom I. Conformational changes of a model protein (complement factor 3) adsorbed on hydrophilic and hydrophobic solid surfaces. J Colloid Interface Sci., 1988, 125, 139–145.
    7. Gemmell CH, A flow cytometric immunoassay to quantify adsorption of complement activation products (iC3b, C3d, SC5b-9) on artificial surfaces. J Biomed Mater Res., 1997, 37, 474–480.
    8. Cook ME, Miller CC, Park Y, Pariza MW, Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poult. Sci., 1993, 72, 1301-1305.
    9. Miller CC, Park Y, Pariza MW, Cook ME, Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commun, 1994, 198, 1107-1112.
    10. Yang M, Pariza MW, Cook ME, Conjugated linoleic acid protects against end stage disease of systemic lupus erythematosus in the NZB/W F1 mouse. Immunopharma. Immunotox., 2000, 22, 433-444.
    11. Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and atherosclerotic heart disease. N. Engl. J. Med., 1997, 337, 408–416.
    12. Halliwell B, Gutteridge JMC, Role of free radicals and catalytic metal ions in human disease: an overview. Meth. Enzymol., 1990, 186, 1-85.
    13. Pinchuk, D. Lichtemberg, The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Prog. Lipid Res., 2002, 41,279-314.
    14. McCall MR, Frei B, Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic. Biol. Med., 1999, 26,1034-1053.
    15. Halliwell B, Aeschbach R, Loliger J, Aruoma OI, The characterization of antixoidants. Food Chem. Toxicol., 1995, 33(7), 601-617.
    16. Truitt A, McNeill G, Vanderhoek JY, Antiplatelet effects of conjugated linoleic acid isomers, Biochim Biophys Acta., 1999, 1438, 239-246.
    17. Yang MC, Kung FC, Effect of conjugated linoleic acid immobilization on the hemocompatibility of cellulose acetate membrane. Colloids and Surfaces B., 2006, 47, 36–42.
    18. Sirolli V, Stante SD, Stuard S, Liberato LD, Amoroso L, Cappelli P, Bonomini M, Biocompatibility and functional performance of a polyethylene glycol acid grafted cellulose membrane for hemodialysis. The Int. J. Artif. Organs, 2000, 23, 356-364.
    19. Lipps B, Stewart R, Perkins H, Holmes G, McLain E, Rolfs M, Oja P, The hollow fiber artificial kidney. Trans. Am. Soc. Artif. Intern. Org., 1969, 13, 200-208.
    20. Sivakumar M, Mohanasundaram AK, Mohan D, Balu K, Rangarajan R, Modification of cellulose acetate its characterization and application as an ultrafiltration membrane. J. Appl. Polym. Sci., 1998, 67, 1939-1946.
    21. Ye SH, Watanabe J, Iwasaki Y, Ishihara K, Novel Cellulose Acetate Membrane Blended with Phospholipid Polymer for Hemocompatible Filtration System. J. Membr. Sci., 2002, 210, 411-421.
    22. Loeb S, Sourirajan S, Sea Water Demineralization by Means of an Osmotic. Membrane, in Saline Water Conversion–II, Adv. Chem., 1963, 28, 117–132.
    23. Kesting RE, Synthetic Polymeric Membranes-A Structure Perspective (2nd edn), Wiley, New York, 1985.
    24. Sivakumar M, Mohanasundaram AK, Mohan D, Balu K, Rangarajan R, Modification of cellulose acetate its characterization and application as an ultrafiltration membrane, J. Appl. Polym. Sci., 1998, 67, 1939-1946.
    25. Allcock HR, Lampe FW. Contemporary Polymer Chemistry (2nd edn). Prentice Hall, New Jersey, 1990.
    26. Jindal KK, McDougall J. A study of the basic principles determining the performance of several high-flux dialyzer. Am. J. kidney Dis., 1989, 14, 507-515.
    27. Case A, Reverter JC, Escolar G, Sanz C, Lopez-Pedret J, Revert L, Ordinas A. Platelet activation on hemodialysis: influence of dialysis membranes. Kidney Int. Suppl., 1993, 41, 217-220.
    28. Pariza MW., Park Y., Cook ME., The biologically active isomers of conjugated linoleic acid, Progr Lipid Res., 2001, 40, 283-298.
    29. Kepler CR, Hirons KP, McNeill JJ, Tove SB. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens, J. Biol. Chem., 1996, 241, 1350-1354.
    30. Pariza MW, Park Y, Cook ME, Mechanisms of action of conjugated linoleic acid: Evidence and speculation, Exp Biol Med., 2000, 223, 8-13.
    31. Banni S, Conjugated linoleic acid metabolism. Curr Opin Lipidol., 2002, 13, 261-266.
    32. Macdonald HB, Conjugated linoleic acid and disease prevention: A review of current knowledge, J. Am. Coll. Nutr., 2000, 19, 111–118.
    33. Yurawecz MP, Hood JK, Mossoba MM, Roach JA, Ku Y, Furan fatty acids determined as oxidation products of conjugated octadecadienoic acid. Lipids, 1995, 30, 595-598.
    34. Van den Berg JJ, Cook NE, Tribble DL, Reinvestigation of the antioxidant properties of conjugated linoleic acid, Lipids, 1995, 30, 599–605.
    35. Okada Y, Okajima H, Konishim H, Terauchi M, Ishii K, Liu IM, Watanabe H, Antioxidant effect of naturally occurring furan fatty acids on oxidation of linoleic acid in aqueous dispersion, J. Am. Oil Chem. Soc., 1990, 67, 858-862.
    36. Ip C, Briggs SB, Haegele AD, Thompson HJ, Storkson J, Scimeca JA, The efficacy of conjugated linoleic acid in mammary cancer prevention is independent of level or type of fat in the diet, Carcinogenesis, 1996, 17, 1045–1050.
    37. Ha YL, Storkson J, Pariza MW, Inhibition of benzo[a]-pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res., 1990, 50, 1097-1101.
    38. Cantwell H, Devery R, Stanton C, Lawless F, The effect of conjugated linoleic acid and glutathione peroxide in oxidatively challenged liver cells. Biochem. Soc. 1998, 26, 69-74.
    39. Yu L, Adams D, Gabel M, Conjugated linoleic acid isomers differ in their free radical scavenging properties. J. Agr. Food Chem. 2002, 50, 4135-4140.
    40. Yu L, Free radical scavenging properties of conjugated linoleic acids. J. Agr. Food Chem. 2001, 49, 3452–3456.
    41. Torres-Duarte AP, Vanderhoek JY, Conjugated linoleic acid exhibits stimulatory and inhibitory effects on prostanoid production in human endothelial cells and platelets. BBA, 2003, 1640, 69–76.
    42. Al-Madaney MM, Kramer JKG, Deng ZY, Vanderhoek JY, Effects of lipid-esterified conjugated linoleic acid isomers on platelet function: evidence for stimulation of platelet phospholipase activity. BBA, 2003, 1635, 75–82.
    43. Ip MM, Masso-Welch PA, Shoemaker SF, Shea-Eaton WK, Ip C, Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture. Exp Cell Res., 1999, 250, 22–34.
    44. Nicolosi RJ., Rogers EJ., Kritchevsky D, Scimeca JA., Huth PJ, Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery, 1997, 22, 266–277.
    45. Banni S, Angioni E, Casu V, Melis MP, Carta G., Corongiu FP, Thompson H, Ip C, Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis, 1999, 20, 1019–1024.
    46. Kritchevsky D, Antimutagenic and some other effects of conjugated linoleic acid. Br J Nutr., 2000, 83, 459–465.
    47. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW, Effect of conjugated linoleic acid on body composition in mice. Lipids, 1997, 32, 853–858.
    48. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J, Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol., 1998, 44, 667–672.
    49. Stangl GI, Conjugated linoleic acids exhibit a strong fat-to-lean partitioning effect, reduce serum VLDL lipids and redistribute tissue lipids in food-restricted rats. J Nutr., 2000, 130, 1140–1146.
    50. Hayek MG, Han SN, Wu D, Watkins BA, Meydani M, Dorsey JL, Smith DE, Meydani SN, Dietary conjugated linoleic acid influences the immune response of young and old C57BL/6NCrlBR mice. J Nutr., 1999, 129, 32–38.
    51. Sugano M, Tsujita A, Yamasaki M, Noguchi M, Yamada K, Conjugated linoleic acid modulates tissue levels of chemical mediators and immunoglobulins in rats. Lipids, 1998, 33, 521–527.
    52. Hunter KA, Crosbie LC, Weir A, Miller GJ, Dutta-Roy AK, A residential study comparing the effects of diets rich in stearic acid, oleic acid, and linoleic acid on fasting blood lipids, hemostatic variables and platelets in young healthy men. J. Nutr. Biochem., 2000, 11, 408–416.
    53. Miller G.J, Dietary fatty acids and blood coagulation. Prostaglandins Leukot. Essent. Fatty Acids 1997, 57, 389–394.
    54. Sanders TAB, Miller GJ, de Grassi T, Yahia N, Postprandial activation of coagulant factor VII by long-chain dietary fatty acids. Thromb. Haemost. 1996, 76, 369–371.
    55. MacIntyre DE, Hoover RL, Smith M, Steer M, Lynch C, Karnovsky MJ, Salzman EW, Inhibition of platelet function by cis-unsaturated fatty acids. Blood, 1984, 63, 848-857.
    56. Wahle KWJ, Peacock LIL, Effects of isomeric cis and trans eighteen carbon monounsaturated fatty acids on porcine platelet function. Biochim. Biophys. Acta, 1996, 1301, 141-149.
    57. Mune M, Yukawa S, Kishino M, Otani H, Kimura K, Nishikawa O, Takahashi T, Kodama N, Saika Y, Yamada Y, Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients. Kidney Int., 1999, 71, 126–129.
    58. Lemke HD, Methods for the detection of endotoxins present during extracorporeal circulation. Nephrol Dial Transplant, 1994, 9, 90-95.
    59. Lynn WA, Golenbock DT, Lipopolysaccharide antagonists. Immunol Today, 1992, 13, 271-276.
    60. Parodi PW, Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J Dairy Sci., 1999, 82, 1339–1349.
    61. Williams CS, DuBois R, Prostaglandin Endoperoxide synthase: why two isoforms? Am J Physiol., 1996, 270, 393–400.
    62. Goosen MFA, Sefton MW. Inactivation of thrombin by antithrombin III on a heparinized biomaterial. Thromb Res., 1980, 20, 534–54.
    63. Guyton AC, Hall JE. Human physiology and Mechanisms of Disease (6th edn). Chapter 26, Philadelphia, PA, Saunders, 1997.
    64. Oyewumi LK, Cernovsky ZZ, Freeman DJ, Relation of Blood Counts During Clozapine Treatment to Serum Concentrations of Clozapine and Nor-Clozapine. Can. J. Psychiat., 2002, 47, 257-261.
    65. Felfernig-Boehm D, Salat A, Vogl SE, Murabito M, Felfernig M, Early Detection of Preeclampsia by Determination of Platelet Aggregability. Thromb. Res., 2000, 98, 139-146.
    66. George-Gay B, Parker K, Understanding the complete blood count with differential. J Perianesth. J. Perianesth. Nurs., 2003, 18, 96-117.
    67. Efeoglu C, Akcay YD, Erturk S, A modified method for preparing platelet-rich plasma: An experimental study. J. Oral Maxillofac Surg., 2004, 62, 1403-1407.
    68. Li ZF, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ. Surface structures and adhesive-free adhesion characteristics of polyaniline films after modification by graft copolymerization, Macromolecules, 1997, 30, 3354-3362.
    69. Lux SE, Stossel TP, Blood: Principles and Practice of haematology. Philadelphia, W.B. Saunders Co., 1995.
    70. Craddock PR, Fehr J, Dalmasso AP, Brighan KL, Jacob HS, Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest., 1977, 59, 879-888.
    71. Kazatchkine MD, Carreno MP, Activation of the complement system at the interface between blood and artificial surfaces. Biomaterials, 1988, 9, 30-35.
    72. Janatova J, Cheung AK, Parker CJ, Biomedical Polymers Differ in Their Capacity to Activate Complement. Complement Inflamm., 1991, 8, 61-69.
    73. Canaud B, Cristol J, Morena M, Leray-Moragues H, Bosc J, Vaussenat F, Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purif., 1999, 17, 99–106.
    74. Combe C, Pourtein M, Precigout V, Baquey A, Morel D, Potaux L, Vincendeau P, Bezian JH, Aparicio M, Granulocyte activation and adhesion molecules during hemodialysis with cuprophane and high flux biocompatible membrane. Am. J. Kidney Dis., 1994, 24, 437–442.
    75. Kuwahara T, Market M, Wauters JP, Neutrophil oxygen radical production by dialysis membranes. Nephrol. Dial. Transplant, 1988, 3, 661–665.
    76. Seyfert UT, Helming E, Hauck W, Skroch D, Albert W, Comparison of blood biocompatibility during haemodialysis with cuprophane and polyacrilonitrile membranes. Nephrol. Dial. Transplant. 1991, 6, 428–434.
    77. Clermont G, Lecour S, Cabanne JF, Motte G, Guilland JC, Chevet D, Rochette L, Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. Free Radical Biology & Medicine, 2001, 31(2), 233–241.
    78. Bonomini M, Reale M, Santarelli P, Stuard S, Settefrati N, Albertazzi A, Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron, 1998, 79, 399–407.
    79. Hernandez MR, Galan AM, Lozano M, Bozzo J, Cases A, Escolar G, Calls J, Ordinas A, Platelet-leukocyte activation during hemodialysis detected with a monoclonal antibody to leukocyte integrin CD11b. Nephron, 1998, 80, 197–203.
    80. Iuliano L, Colavita AR, Leo R, Pratico D, Violi F, Oxygen free radicals and platelet activation. Free Radic. Biol. Med., 1997, 22, 999–1006.
    81. Sasaki M, Hosoya N, Saruhashi M, Development of vitamin E-modified membrane. Contrib. Nephrol., 1999, 127, 49–70.
    82. Buoncristiani U, Galli F, Rovidati S, Albertini MC, Campus G, Canestrari F, Oxidative damage during hemodialysis using a vitamin-E-modified dialysis membrane: a preliminary characterization. Nephron., 1997, 77, 57–61.
    83. Galli F, Rovidati S, Chiarantini L, Campus G, Canestrari F, Buoncristiani U, Bioreactivity and biocompatibility of a vitamin E-modified multi-layer hemodialysis filter. Kidney Int., 1998, 54, 580–589.
    84. Miyazaki H, Matsuoka H, Itabe H, Usui M, Ueda S, Okuda S. Imaizumi, T. Hemodialysis impairs endothelial function via oxidative stress: effects of vitamin E-coated dialyzer. Circulation, 2000, 101, 1002–1006.
    85. Weiss TL, Selleck SE, Reusch M, Wintroub BU, Serial subculture and relative transport of human endothelial cells in serum-free, defined conditions. In Vitro Cell. Dev. Biol., 1990, 26, 759–768.
    86. Furie B, Furie BC, The molecular basis of blood coagulation. Cell, 1988, 53, 505−518.
    87. Wojta J, Gallicchio M, Zoelner H, Filonzi EL, Hamilton JA, McGrath K. Interleukin-4 stimulates expression of urokinase-type plasminogen activator in cultured human foreskin microvascular EC. Blood, 1993, 81, 3285-3293.
    88. Lu FJ, Lin JT, Wang HP, Huang WC, A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood, Experientia, 1996, 52, 141–144.
    89. Sun JS, Hang YS, Huang IH, Lu FJ, A simple chemiluminescence assay for detecting oxidative stress in ischemic limb injury, Free Radical Bio. Med., 1996, 20, 107–112.
    90. Vladimirov YA, Intrinsic (low-level) chemiluminescence, In: Free Radicals. A Practical Approach (Punchard NA, Kelly FJ, eds). New York: Oxford University Press, 1996, 65–82.
    91. Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD, Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements, Free Radical Bio. Med., 1995, 18, 153-158.
    92. Miyazawa T, Fujimoto K, Suzuki T, Yasuda K, Determination of phospholipid hydroperoxides using luminol chemiluminescence high performance liquid chromatography, Method Enzymo., 1994, 34, 324-332.
    93. Yang MC, Tong JH, Loose Ultrafiltration of Proteins using Hydrolyzed Polyacrylonitrile Hollow Fiber. J Membrane Sci., 1997, 132, 63-71.
    94. Yang MC, Lin WC, The Grafting of Chitosan Oligomer to Polysulfone Membrane via Ozone-Treatment and its Effect on Anti-Bacterial Activity. Journal of Polymer Research, 2002, 9, 135–140.
    95. Yang MC, Lin WC, Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polym. Adv. Technol., 2003, 14, 103-113.
    96. Jetsy J, Nemerson Y, The pathways of blood coagulation. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, editors. Williams hematology (5ed). New York: McGraw-Hill, 1995, 1227-1238.
    97. Turek JJ, Li Y, Schoenlein IA, Allen KG.D, Watkins BA, Modulation of macrophage cytokine production by conjugated linoleic acids is influenced by the dietary n-6:n-3 fatty acid ratio. J. Nutr. Biochem., 1998, 9, 258–266.
    98. Schletter J, Heine H, Ulmer AJ, Rietschel ET, Molecular mechanisms of endotoxin activity. Arch. Microbiol., 1995, 164, 383–389.
    99. Tolchard S, Hare AS, Nutt DJ, Clarke G, TNF-α mimics the endocrine but not the thermoregulatory responses of bacterial lipopolysaccharide (LPS): correlation with FOS-expression in the brain. Neuropharmacology, 1996, 35, 243–248.
    100. Rees RC, Parry H, Macrophages in tumor immunity. In: Lewis CE, McGee JO, eds. The Macrophage: The Natural Immune System. New York: Oxford University Press, 1992, 315–357.
    101. Wahle KW, Heys SD, Rotondo D, Conjugated linoleic acids: are they beneficial or detrimental to health? Progress in Lipid Research, 2004, 43, 553–587.
    102. Iwakiri Y, Sampson DA, Allen KG.D, Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by conjugated linoleic acid in murine macrophages. Prostaglandins. Leukotrienes and Essential Fatty Acids, 2002, 67, 435-443.
    103. Gaggi R, Santoro A, Melotti C, Di Stasio D, A chemiluminescence assay for the detection of reactive oxygen species produced by human neutrophils: In vitro comparison of vitamin E-modified multilayer hemodialysis filter with a polysulfone dialyzer; in Ronco C, La Greca G (eds): Vitamin E-Bonded Membrane. A Further Step in Dialysis Optimization. Contrib Nephrol. Basel. Karger, 1999, 127, 215-225.
    104. Baggio B, Musacchio E, Priante G., Polyunsaturated fatty acids and renal fibrosis: pathophysiologic link and potential clinical implications. J Nephrol., 2005, 18, 362-367.
    105. Matata BM, Courtney JM, Sundaram S, Wark S, Bowry SK, Vienken J, Lowe GDO. Determination of contact phase activation by the measurement of the activity of supernatant and membrane surface-adsorbed factor XII (FXII): Its relevance as a useful parameter for the in vitro assessment of haemodialysis membranes. Journal of Biomedical Materials Research, 1996, 31, 63-70.
    106. Pekna MR, Larsson B, Formgren UR, Nilsson B. Complement activation by polymethyl methacrylate minimized by end-point heparin attachment. Biomaterials, 1993, 14, 189-192.
    107. Cheung AK, Park CJ, Janatova J, Brynda E, Modulation of complement activation on hemodialysis membranes by immobilized heparin. J. Am. Soc. Nephrol., 1992, 2, 1328-1337.
    108. Kose K, Dogan P, Gunduz Z, Dusunsel R, Utas C, Oxidative Stress in Hemodialyzed Patients and the Long-Term Effects of Dialyzer Reuse Practice, Clin. Biochem., 1997, 30, 601-606.
    109. Mayer B, Zitta S, Greilberger J, Holzer H, Reibnegger G, Hermetter A, Oettl K, Effect of hemodialysis on the antioxidative properties of serum, BBA. 2003, 1638, 267-272.
    110. Nube MJ, Grooteman MP, Overview of dialyzer elution studies: impact on current views on bioincompatibility and future perspectives, Neth. J. Med., 1998, 52, 160-168.
    111. Foley RN, Parfrey PS, Sarnack MJ, Cardiovascular diseases in chronic renal failure, Am. J. Kidney Dis., 1998, 32, 112–119.
    112. Karlsson C, Braide M, Nygren H, Interactions between whole blood and foreign materials: surface-adsorbed cellulose ethers reduce granulocyte activation by inflammatory mediators, Colloid. Surface. B., 2000, 17, 95-101.
    113. Yang MC, Lin WC, Liu TY, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 2004, 25, 1947-1657.
    114. Yang MC, Lin WC, Chiu CL, Surface modification and blood compatibility of heparinated polysulfone membrane via ozone-induced grafting. Polym. Adv. Tech., 2002, 14, 103-113.
    115. Yang MC, Lin WC, Surface modification and blood compatibility of polyacrylonitrile membrane with immobilized chitosan-heparin conjugate. J. Polym. Res., 2002, 9, 201-206.
    116. Lai KN, Wang AY, Ho K, et al., Use of low-dose low molecular weight heparin in hemodialysis. Am J Kidney Dis., 1996, 28, 721-726.
    117. Combea C, Molisa E, Lucasa P, Rileyb R, Clarka MM, The effect of CA membrane properties on adsorptive fouling by humic acid. J. Membrane Sci., 1999, 154, 73-87.
    118. Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials, 1999, 20, 1545-1551.
    119. Bae JS, Seo EJ, Kang IK. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials, 1999, 20, 529-537.
    120. Absolom DR, Zingg W, Neumann AW, Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res., 1995, 16, 593-599.
    121. Lee JH, Lee HB, Platelet adhesion onto wettability gradient surfaces in the absence and presence of plasma proteins. J Biomed Mater Res., 1998, 41, 304-311.
    122. Winterton LC, Andrade JD, Feijen J, Kim SW, Heparin interaction with protein with protein-adsorbed surfaces. J Coll Interface Sci., 1986, 111, 314-342.
    123. Maud B, Gorbet, Michael V, Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25, 5681-5703.
    124. Dion I, Baquey C, Candelon B, Monties JR, Haemocompatibility of titanium nitride. Int J Artif Organs, 1992, 15, 617-621.
    125. Branger B, Oules R, Treissede D, Balducchi JP, Michel F, Crastes de Paulet A, Treille M, Blood lines should be considered in studies of biocompatibility during acetate haemodialysis. Proc. Eur. Dial Transplant Assoc Eur. Ren. Assoc., 1985, 21, 162-166.
    126. Rousseau Y, Carreno MP, Poignet JL, Kazatchkine MD, Haeffner-Cavaillon N, Dissociation between complement activation, integrin expression and neutropenia during hemodialysis. Biomaterials, 1999, 20, 1959-1967.
    127. Hoenich NA, Woffindin C, Stamp S, Roberts SJ, Turnbull J, Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis. Biomaterials, 1997, 18, 1299-1303.
    128. Rousseau Y, Haeffner-Cavaillon N, Poignet JL, Meyrier A, Carreno MP, In vivo intracellular cytokine production by leukocytes during hemodialysis. Cytokine, 2000, 12, 506-517.

    QR CODE