簡易檢索 / 詳目顯示

研究生: 李昱賢
Yu-Hsien - Lee
論文名稱: 使用線性提升技術並適合於生醫應用之低功耗可編程轉導電容濾波器積體電路
Power-Efficient Integrated Circuits of Reconfigurable OTA-C Filters with Linearity Enhancement for Biomedical Application
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳新
Chen, Hsin
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 轉導放大器電容濾波器低功耗積體電路線性提升技術懸浮閘電晶體
外文關鍵詞: operational transconductance amplifier, OTA-C Filter, Lowpower, linearization, floating gate circuit
相關次數: 點閱:286下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出低功耗高線性度可編程重組化高階濾波器,可應用於生醫感測類比前端電路中,以去除非頻帶之訊號以及雜訊。本論文所實現之高階濾波器響應可由多個可編程重組化之二階轉導電容濾波器串接而成,每個二階轉導電容濾波器包含四個線性化之轉導運算放大器以及兩個電容,並可視需求產生低通或帶通之輸出響應。
    為了增進濾波器之線性度,所設計之轉導運算放大器差動對使用六組擴散對及四組差動對以非線性相消的方式擴增電路之輸入線性範圍。為了更加提升電路之功率效能及提供轉導值之編程性,轉導運算放大器電路使用全差動架構,利用懸浮閘電晶體調控轉導運算放大器之電流值及實現共模回授,並使用互補差動對使轉導值能夠在相同電流下倍增。為了降低並減少製程變異對線性度的影響,電路佈局使用共質心布局技巧,同時考慮不同電晶體電流之敏感度以決定電晶體之尺寸,不同尺寸之電晶體利用單一尺寸電晶體以串聯或並聯方式組成。由電路模擬結果可知,在相同電路頻寬條件下,與原始基本之轉導運算放大器相比,所提出之轉導運算放大器電路功耗增加57%,輸入等效雜訊增加19%,但是輸入線性範圍可改善17.71倍。
    利用所設計之轉導運算放大器所構成之二階轉導電容濾波器中,可透過編程轉導運算放大器之電流來調整放大器之中心頻率、增益、及品質因數等參數,並使用一內含非揮發性記憶體之串並列傳輸電路設定訊號輸入及輸出之路徑,並得以選擇低通或帶通輸出。所提出之濾波器電路以台積電0.35m標準CMOS製程設計並實現,量測結果得知,轉導運算放大器之輸入線性範圍可達216mVpp,二階低通輸出之等效輸入雜訊為86Vrms,當頻寬編程為2kHz時,所需之功耗為100nW,無雜波動態範圍為52.6dB。相同中心頻率下,帶通輸出之等效輸入雜訊為72.9Vrms,無雜波動態範圍為53.57dB。此外,為了增加輸入線性範圍,本論文也提出使用輸入電容衰減技術,並利用可編程高阻抗虛擬電阻,給定懸浮節點初始電壓,使雙端輸入線性範圍增加至0.9Vpp(0.636Vrms),可得到之動態範圍59.4225dB。
    本論文最後討論轉導電容濾波器設計參數內轉導放大器轉導值會受到溫度飄移展生變化,進而影響濾波器之參數,因此本論文設計一轉導放大器轉導值之溫度補償電路,就能降低轉導放大器受到溫度的影響進而降低濾波器之參數變化。由量測可得知,由常溫27度至80度,有溫度補償之四階低通切比雪夫濾波器其截止頻率變化量,由無溫度補償之1649%降至91.5%,其變化量相差18倍。


    In this thesis, a low-power high linearity programmable high-order filter is designed and presented that is suitable to be employed in the analog front-end circuitsfor biomedical applications to remove out-of-band signals and interference. This filter consists of a cascade of multiple reconfigurable biquadratic sections that can provide lowpass or bandpass responses.The reconfigurable biquadratic section is composed of four power-efficient linearized operational transconductance amplifiers (OTAs) and two capacitors with all filter parameters, such as the natural frequency, gains, and quality factor, orthogonally programmable.
    The differential pair in the proposed OTA is composed of six differs and four differential pairs so that nonlinearity cancellation technique can be applied to improve OTA input linear range. To further improve power efficiency, complementary differential pair topology as well as current reuse technique is employed to double the transconductance value under the same condition of current consumption. Floating gate transistors are used to adjust the bias current of the OTA and to implement the common-mode feedback without extra power consumption. To minimize the impact of process variation, common-centroid layout techniques are applied. The transistor dimensions are designed according to the component sensitivity. Each transistor is realized by series or parallel combination of unit size transistors. From simulation, compared with a basic OTA under the same condition of bandwidth requirement, the power consumption of the proposed OTA increases by 57% and the input referred noise increases by 19%. However, the input linear range can be improved by 17.71 times.
    A high-order filter chip that is composed of six proposed OTA-C filter is designed and fabricated in TSMC 0.35m CMOS process. The gains, natural frequency, and quality factor of each biquadratic filter can be orthogonally programmed. A serial-peripheral interface circuit with non-volatile memory is used to select the signal path as well as lowpass or bandpass output. From measurements, the input linear range of the OTA can be 216mVpp. The input referred noise from the lowpass output is 86Vrms.When the bandwidth is programmed at 2kHz, the power consumption is 100nW with spurious-free dynamic range (SFDR) of 52.6dB. With the same natural frequency, the measured input referred noise from the bandpass output is 72.9Vrms and the measured SFDR is 53.57dB. Besides, to further increase the input linear range, this thesis also propose another linearization technique using capacitive input attenuation technique with programmable high impedance pseudo-resistors. In this manner, the input linear range can be improved to 0.9Vpp with SFDR of 59.42dB.
    Finally, this thesis designs a temperature compensation circuit containing a PTAT circuit to reduce the effect of temperature drift. From measurement, the frequency drift can reduced from 1649% to 91.5% when temperature drifts from 27〬C to 80〬C.

    摘要 vi Abstract viii 目錄 x 圖目錄 xiii 表目錄 xvi 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文大綱 2 1.4 懸浮閘電晶體介紹 3 1.4.1 穿隧效應 4 1.4.2 熱載子注入效應 5 第二章 生醫應用之高線性度低功耗可重組化轉導電容濾波器電路 7 2.1 研究動機與原理 7 2.2 系統架構與電路介紹 8 2.3 可編程低功耗類比濾波器 9 2.3.1 雙二階轉導電容帶通濾波器 10 2.3.2 雙二階轉導電容低通濾波器 13 2.4 高線性度可編程轉導放大器設計 14 2.4.1 線性化技術 15 2.4.2 線性效率因數 19 2.4.3 高效能線性化轉導放大器 19 2.4.4 懸浮閘電晶體偏壓與回授電路 21 2.4.5 製程變異與架構改進 22 2.5 雜訊分析 24 2.5.1 轉導放大器雜訊分析 24 2.5.2 雙二階轉導電容濾波器雜訊分析 27 第三章 線性提升技術應用於生醫感測類比前端之低功耗可重組化轉導電容 濾波器電路 30 3.1 研究背景與原理 30 3.2 系統架構與電路介紹 31 3.3 電容輸入衰減轉導放大器 32 3.4 可編程虛擬電阻 33 3.5 雜訊計算與動態範圍 35 第四章 溫度補償 38 4.1 研究動機 38 4.2 轉導值溫度補償原理 38 4.3 正比絕對溫度之電路 39 4.3.1 一般正比絕對溫度電路 39 4.3.2 懸浮閘電晶體之正比絕對溫度電路 41 4.4 轉導值和溫度無關電路 43 第五章 量測結果與討論 46 5.1 懸浮閘電晶體之編程與量測 47 5.2 生醫應用之高線性度低功耗可重組化轉導電容濾波器電路量測 48 5.2.1 轉導放大器線性度範圍量測 48 5.2.2 雙二階轉導電容濾波器量測 50 5.2.3 高階濾波器量測 56 5.3 線性提升技術應用於生醫感測類比前端之低功耗可重組化轉導電容 濾波器電路量測 62 5.3.1 高階濾波器量測 62 5.3.2 心音肺音量測 63 5.4 溫度補償量測 67 5.3.1 雙二階轉導電容濾波器量測 67 5.3.2 高階濾波器量測 67 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 69 參考文獻 70

    [1] X. Zou, X. Xu, L. Yao, and Y. Lian, ”A 1-v 450-nw fully integrated programmable biomedical sensor interface chip,” IEEE Journal of Solid-State Circuits,vol.44,no,4,pp.1067—1077,2009.
    [2] F. Zhang, J. Holleman, and B. Otis, ”Design of ultra-low power biopotential amplifiers for biosignal acquisition applications,” IEEE Transactions on Biomedical Circuits and Systems,vol.6,no.4,pp.344-355,2012.
    [3] V. Srinivasan, G. Serrano, J. Gray, and P. Hasler, “A precision CMOS amplifier using floating-gate transistors for offset cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280-291, Feb. 2007.
    [4] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, "An analog programmable multi dimensional radial basis function based classifier,'' in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148-2158, 2007.
    [5] P. Hasler, Foundations of Learning in Analog VLSI, Ph.D. Thesis, California Institute of Technology, February 1997.
    [6] B. Degnan, C. Duffy, and P. Hasler, "Crossbar switch matrix for floating-gate programming over large current ranges,'' in IEEE Proceedings of the International Symposium on Circuits and Systems, May 2010.
    [7] C. Mead, “Analog VLSI and neural systems, ”ser. VLSI systems series, Addison-Wesley, 1989.
    [8] P. M. Furth and H. A. Ommani, “Low-voltage highly-linear transconductor design in subthreshold CMOS,”IEEE Proceedings of the Midwest Symposium on Circuits and Systems, Aug 1997.
    [9] S. Solus-Bustos, J.Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, ”A 60-db dynamic-range CMOS sixth-order 2.4-hz low-pass filter for medical applications, ”IEEE Transactions on Circuits and System II: Analog and Digital Signal Processing, vol. 47, no. 12, pp.1391-1398, 2000.
    [10] P. Corbishley and E. Rodriguez-Villegas, “A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector, ”IEEE Transactions on Biomedical Circuits and Systems, vol. 1,no. 3,pp. 163-171, 2007.
    [11] E. Rodriguez-Villegas, A.J. Casson, and P. Corbishley, ”A subhertz nanopower low-pass filter,”IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 58, no. 6, pp. 351–355, 2011.
    [12] J. L. Bohorquez, M. Yip, A. P. Chandrakasan, and J. L. Dawson, ”A biomedical sensor interface with a sinc filter and interference cancellation,” IEEE Journal of Solid–State Circuits, vol. 46, no. 4, pp. 746-756, 2011.
    [13] R. Sarpeshkar, R. Lyon, and C. Mead, ”A low-power wide-dynamic range analog VLSI cochlea,” Analog Integrated Circuits and Signal Processing, vol. 16, no. 3, pp. 245–274, 1998.
    [14] A. G. Katsiamis, E. M. Drakakis, and R. F. Lyon, “A biomimetic, 4.5 µW, 120dB, log-domain cochlea channel with AGC,” IEEE Journal of Solid–State Circuits, vol. 44, no. 3, pp. 1006–1022, 2009.
    [15] L. Acosta, M. Jimenez, R. G. Carvajal, A. J. Lopez-Martin, and J. Ramirez-Angulo, “Highly linear tunable CMOS Gm-C low-pass filter,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 56, no. 10, pp. 2145–2158, 2009.
    [16] S. Koziel and S. Szczepanski, “Design of highly linear tunable CMOS OTA for continuous-time filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 2, pp. 110-122, 2002.
    [17] E. Rodriguez-Villegas, A. Yufera, and A. Rueda, “A 1.25-V micropower Gm-C filter based on fgmos transistors operating in weak inversion,” IEEE Journal of Solid–State Circuits, vol. 39, no. 1, pp. 100-111, 2004.
    [18] P. Furth and A. G. Andreou, “Linearised differential transconductors in subthreshold CMOS.” Electronics Letters, vol. 31(7), pp. 545-547, 30th March 1995.
    [19] X. Zhang, E. I. El-Masry, "A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters", IEEE Transactions on Circuits and Systems I: Reg. Papers, vol. 54, no. 6, pp. 1204-1212, Jun. 2007.
    [20] Joel Gak, matias R. Miguez and A. Arnaud, "Nanopower OTAs With Improved Linearity and Low Input Offset Using Bulk Degeneration," IEEE Transaction on Circuits and Systems I: Regular papers, vol. 61, no. 3, March 2014.
    [21] F. Krummenacher and N. Joehl, “A 4-Mhz CMOS continuous-time filter with on-chip automatic tuning,” IEEE Journal of Solid–State Circuits, vol. 22, no. 3, pp. 750-758, 1988.
    [22] T. Delbruck, “’bump’ circuits for computing similarity and dissimilarity of analog voltages, ”Proceedings of the International Joint Conference, Neural Networks, Jul 1991.
    [23] H. Tanimoto, M. Koyama, and Y. Yoshida, “Realization of a 1-v active filter using a linearization technique employing plurality of emittercoupled pairs,” IEEE Journal of Solid–State Circuits, vol. 26, no. 7, pp. 937-945, 1991.
    [24] S. Rai, J. Holleman, and J. N. Pandey, “A 500 µW neural tag with 2µVrms AFEand frequency-multiplying MICS/ISM FSK transmitter,”IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb 2009.
    [25] X. Qian, Y. P. Xu, and X. Li, ``A CMOS continuous-time low-pass notch filter for EEG systems,'' Analog Integrated Circuits and Signal Processing, vol. 44, no. 3, pp. 231-238, 2005.
    [26] S. Lee and C. Cheng, ``Systematic design and modeling of a ota-c filter for portable ecg detection,'' IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 53-64, 2009.
    [27] M. Yang, J. Liu, Y. Xiao, and H. Liao, ``14.4 nW fourth-order bandpass filter for biomedical applications,'' IEEE Electronics Letters, vol. 46, no. 14, pp. 973-974, 2010.
    [28] Y. Tsividis, M. Banu, and J. Khoury, ”Continuous-time MOSFET-C filters in VLSI,” IEEE Journal of Solid–State Circuits, vol. 33, no. 2, pp. 125-140, 1986.
    [29] M. Tavakoli and R. Sarpeshkar, ”A sinh resistor and its application to tanh linearization,” IEEE Journal of Solid–State Circuits, vol. 40, no. 2, pp. 536-543, 2005.
    [30] E.zalevli and P.E.Hasler, ”Tunable highly linear floating-gate cmos resistor using common-mode linearization technique,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 4, pp. 999-1010, 2008.
    [31] R. J. Widlar, “New developments in IC voltage regulators,” IEEE Journal of Solid–State Circuits, vol. SC-6, no. 1, pp. 2-7, Feb. 1971.
    [32] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid–State Circuits, vol. SC-8, no. 3, pp. 222-226, Jun. 1973.
    [33] A. P. Brokaw, “A simple three-terminal IC bandgap reference,” IEEE Journal of Solid–State Circuits, vol. SC-9, no. 6, pp. 388-393, Dec. 1974.
    [34] M. Gu and S. Chakrabartty, “Subthreshold, varactor-driven CMOS floating-gate current memory array with less than 150-ppm/°K temperature sensitivity,” IEEE Journal of Solid–State Circuits, vol. 47, no. 11, pp. 2846-2856, Nov. 2012.
    [35] L. Lu, B. Vosooghi, J. Chen and C. Li, “A Subthreshold-MOSFETs-Based Scattered Relative Temperature Sensor Front-End With a Non-Calibrated Relative Inaccuracy From - to ,” IEEE Transactions on Circuits and Systems I , vol. 60, no. 5, May 2013.
    [36] R. J.E. Jansen, J. Haanstra and D. Sillars, “Complementary Constant-gm Biasing of Nauta-Transconductors in Low-Power gm–C Filters to ±2% Accuracy Over Temperature,” IEEE Journal of Solid–State Circuits, vol. 48, no. 7, July 2013.
    [37] F. Fiori and P. S. Crovetti, “A new compact temperature-compensated CMOS current reference,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 11, pp. 724-728, Nov. 2005.
    [38] Y. P. Tsividis and R. W. Ulmer, “A CMOS voltage reference,” IEEE Journal of Solid–State Circuits, vol. SC-13, no. 6, pp. 774-778, Dec. 1978.
    [39] R. W. Ye and Y. P. Tsividis, “Bandgap voltage reference sources in CMOS technology,” Electronics Letters, vol. 18, pp. 24-25, Jan. 1982.
    [40] C. D. Salthouse and R. Sarpeshkar, “A practical micropower programmable bandpass filter for use in bionic ears,” IEEE Journal of Solid–State Circuits, vol. 38, no. 1, pp. 63 – 70, 2003.
    [41] Y. Tajalli, A. ; Leblebici, “A widely-tunable and ultra-low-power mosfet-c filter operating in subthreshold,” in IEEE Proceedings of the Custom Integrated Circuits Conference, 2009.
    [42] A. J. Casson and E. Rodriguez-Villegas, “A 60 pW gm-c continuous wavelet transform circuit for portable EEG systems,” IEEE Journal of Solid–State Circuits, vol. 46, no. 6, pp. 1406 – 1415, 2011.
    [43] C. Garcia-Alberdi, A. Lopez-Martin, L. Acosta, R. Carvajal, and J. Ramirez-Angulo, “Tunable class AB CMOS Gm-C filter based on quasi-floating gate techniques,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 60, no. 5, pp. 1300 – 1309, 2013.

    無法下載圖示 全文公開日期 2022/01/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE