簡易檢索 / 詳目顯示

研究生: 陳怡璇
Yi-Xuan Chen
論文名稱: 骨細胞對葉酸接枝奈米金之攝入與促進性拉曼光譜分析
The Uptake of Gold Nanoparticles Conjugated with Folic Acid by Osteocytes and the Analysis of SERS
指導教授: 何明樺
Ming-Hua Ho
口試委員: 蔡協致
Hsieh-Chih Tsai
糜福龍
Fwu-Long Mi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 166
中文關鍵詞: 葉酸奈米金骨細胞細胞攝入表面增強拉曼散射
外文關鍵詞: folic acid, gold nanoparticles, osteocytes, cellular uptake, surface enhanced Raman scattering
相關次數: 點閱:588下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用葉酸做為還原劑及封端劑,以加熱法一步驟合成出葉酸-奈米金粒子,並且透過不同的葉酸濃度來控制葉酸-奈米金粒子的形狀,分別合成球形與非球形兩種型態的葉酸-奈米金粒子,球形與非球形葉酸-奈米金粒子粒徑分別為43.3±12.5 nm及46.5±6.2 nm。葉酸-奈米金粒子具有良好的穩定性,其介達電位能持續保持在-6 mV以及-8 mV長達30天以上。
    在細胞攝入實驗中,我們觀察了骨癌細胞(UMR)與骨母細胞(7F2)對於葉酸-奈米金的攝入機制,細胞切片的TEM影像顯示,在1天後便可將葉酸-奈米金粒子攝入,在攝入3天後細胞質內葉酸-奈米金含量達最高峰,在3至7天時行胞吐作用排出,除此之外,由於骨癌細胞有葉酸受體表現,導致骨癌細胞攝入的含量相較於骨母細胞更多,且球形葉酸-奈米金粒子攝入骨細胞內的含量也比非球形葉酸-奈米金粒子多。
    在體外細胞實驗部分發現,30 μM的葉酸-奈米金會影響分化,促進鹼性磷酸酶的分泌以及鈣鹽的沉積;而葉酸-奈米金濃度若在20 μM以下則不會對細胞活性、細胞分化、蛋白質分泌以及礦化造成影響。
    表面增強拉曼光譜結果顯示,葉酸-奈米金粒子對細胞的拉曼訊號有增強的效應,由於非球形葉酸-奈米金粒子具有尖銳邊緣可增強周邊電場,與球形葉酸-奈米金粒子相比有更強的拉曼訊號,此外,葉酸-奈米金對骨癌細胞中的拉曼訊號表現出較佳的增強效果,這是因為癌細胞對葉酸-奈米金粒子具有更高的攝入量。


    In this research, folic acid (FA) was used as a reducing and capping agent to synthesize gold nanoparticles (GNPs) in a one-step process. The shapes of FA-GNPs were controlled by different folic acid concentrations and spherical FA-GNPs and non-spherical FA-GNPs were synthesized respectively. The particle size of spherical FA-GNPs and non-spherical FA-GNPs were 43.3±12.5 nm and 46.5±6.2 nm, respectively. FA-GNPs have good stability, and their zeta potential were maintained at -6 mV and -8 mV for more than 30 days.
    UMR (Rat osteogenic sarcoma) and 7F2 (Osteoblast) cells were used to identify the cellular uptake of FA-GNPs. From TEM images, the cellular uptake for FA-GNPs took about 1 day, and the maximum number of FA-GNPs in cytoplasm was reached after 3 days. After the culture for 3-7 days, the exocytosis of GNPs was observed. The uptake of GNPs in UMR cells was higher than that in 7F2 cells due to the abundant folate receptor on the surface of UMR cells. Besides, the uptake of spherical FA-GNPs was much higher than non-spherical FA-GNPs.
    According to in vitro tests, it was found if the FA-GNPs concentration was less than 30 μM, the cell viability, differentiation, protein secretion, and mineralization were not affected. On the other hand, FA-GNPs which was more concentrated than 30 μM would enhance the cell viability and mineralization. No matter for UMR or 7F2 cells in this study, the limit of 30 μM for the non-osteoconductivity of GNPs.
    The results from surface enhanced Raman spectroscopy (SERS) indicated that the FA-GNPs enhanced the intensity of the Raman spectra significantly. The non-spherical FA-GNPs showed a better enhancement in Raman spectroscopy than the spherical ones. This was because the sharp edges of non-spherical GNPs promoted surrounding electric field. In addition, the Raman signals from UMR were enhanced more than 7F2, which was caused by the higher cellular uptake of FA-GNPs in the cells with folate receptors.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XII 表目錄 XVI 方程式目錄 XVII 第一章 緒論 1 第二章 文獻回顧 3 2.1 奈米科技 3 2.1.1 奈米科技之簡介 3 2.1.2 奈米材料之製備 4 2.1.3 奈米材料之特性 5 2.1.4 奈米材料之應用 7 2.2 奈米金粒子 8 2.2.1 奈米金粒子之特性 8 2.2.2 奈米金粒子之製備 10 2.3 奈米金粒子與細胞之作用 12 2.3.1 奈米金粒子與細胞間的作用 12 2.3.2 奈米金尺寸對細胞毒性的影響 15 2.3.3 奈米金形狀對細胞毒性的影響 17 2.3.4 奈米金電性對細胞毒性的影響 22 2.3.5 奈米金表面官能基對細胞毒性之影響 24 2.3.6 奈米金對細胞分化的影響 26 2.4 奈米金在生物醫學領域之應用 27 2.4.1 藥物傳遞(drug delivery) 27 2.4.2 光熱療法(photothermal therapy) 28 2.4.3 生物感測(biosensing) 29 2.5 拉曼散射 30 2.5.1 拉曼散射之簡介 30 2.5.2 拉曼散射之原理 31 2.5.3 拉曼散射之應用 36 2.5.4 表面增強拉曼散射之原理 38 2.5.5 表面增強拉曼散射之應用 39 2.6 奈米金之表面官能基 41 2.7 奈米金粒子之形狀控制 44 2.8 骨母細胞 46 2.8.1 骨母細胞來源 46 2.8.2 骨母細胞的分化標記 47 2.9 實驗設計與目的 50 第三章 實驗材料與方法 51 3.1 實驗藥品 51 3.2 實驗儀器 53 3.3 實驗葉酸-奈米金粒子製備 55 3.3.1 葉酸-奈米金粒子合成 55 3.3.2 葉酸-奈米金粒子物性分析 56 3.3.3 葉酸-奈米金粒子之殺菌程序 56 3.4 體外細胞實驗 57 3.4.1 實驗操作 57 3.4.2 細胞來源 57 3.4.3 細胞培養 60 3.4.4 細胞冷凍保存 61 3.4.5 細胞解凍及培養 61 3.4.6 細胞計數 62 3.4.7 粒線體活性測試 64 3.4.8 鹼性磷酸酶測試 67 3.4.9 蛋白質濃度測定 69 3.4.10 穿透式電子顯微鏡樣品製備 70 3.4.11 拉曼光譜檢測 74 第四章 結果與討論 75 4.1 不同形狀之葉酸-奈米金粒子的合成 75 4.2 葉酸-奈米金粒子之物性分析 78 4.2.1 葉酸-奈米金粒子的型態與穩定性分析 78 4.2.2 葉酸-奈米金粒子的前處理與定性定量分析 82 4.3 葉酸-奈米金粒子被細胞攝入的情形 87 4.4 葉酸-奈米金粒子對細胞活性與行為的影響 111 4.4.1 細胞粒線體活性測試 111 4.4.2 細胞總蛋白質 116 4.4.3 鹼性磷酸酶表現 120 4.4.4 細胞礦化元素分析測試 127 4.5 表面增強拉曼散射監測活細胞 132 第五章 結論 146 參考文獻 148

    1. Dreaden, E.C., A.M. Alkilany, X. Huang, C.J. Murphy, and M.A. El-Sayed, “The golden age: gold nanoparticles for biomedicine” Chem Soc Rev; 2012; 41: 2740-2779.
    2. Robinson, P.R. and C.S. Hsu, Introduction to Petroleum Technology. Springer Handbook of Petroleum Technology. 2017: 2-2.
    3. Hulla, J.E., S.C. Sahu, and A.W. Hayes, “Nanotechnology: History and future” Hum Exp Toxicol; 2015; 34: 1318-1321.
    4. Lövestam, G., H. Rauscher, G. Roebben, B.S. Klüttgen, N. Gibson, J.-P. Putaud, and H. Stamm, “Considerations on a definition of nanomaterial for regulatory purposes”. Publications Office of the European Union: Luxembourg; 2010; 17-25.
    5. Nasrollahzadeh, M., S.M. Sajadi, M. Sajjadi, and Z. Issaabadi, An Introduction to Nanotechnology. An Introduction to Green Nanotechnology. 2019: 3-13.
    6. Attaf, B., Advances in composite materials for medicine and nanotechnology. IntechOpen. 2011: 211-213.
    7. Cheng, L.C., X. Jiang, J. Wang, C. Chen, and R.S. Liu, “Nano-bio effects: interaction of nanomaterials with cells” Nanoscale; 2013; 5: 3547-3469.
    8. Liu, Y., Multifunctional nanoprobes: from design validation to biomedical applications. Springer. 2017: 1-2.
    9. Ramos, A.P., M.A.E. Cruz, C.B. Tovani, and P. Ciancaglini, “Biomedical applications of nanotechnology” Biophys Rev; 2017; 9: 79-89.
    10. Rosenstiel, S.F., M.F. Land, and B.J. Crispin, “Dental luting agents: A review of the current literature” J Prosthet Dent; 1998; 80: 280-301.
    11. Alkilany, A.M. and C.J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J Nanopart Res; 2010; 12: 2313-2333.
    12. Kong, F.Y., J.W. Zhang, R.F. Li, Z.X. Wang, W.J. Wang, and W. Wang, “Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications” Molecules; 2017; 22: 1445-1445.
    13. Huang, X. and M.A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy” J Adv Res; 2010; 1: 13-28.
    14. Jazayeri, M.H., H. Amani, A.A. Pourfatollah, H. Pazoki-Toroudi, and B. Sedighimoghaddam, “Various methods of gold nanoparticles (GNPs) conjugation to antibodies” Sens Biosensing Res; 2016; 9: 17-22.
    15. Zhang, Z., J. Jia, Y. Lai, Y. Ma, J. Weng, and L. Sun, “Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells” Bioorg Med Chem; 2010; 18: 5528-5534.
    16. Frens, G., “Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions” Nat Phys Sci; 1973; 241: 20-22.
    17. Brust, M., M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system.” J Chem Soc, Chem Commun; 1994; 7: 801-802.
    18. Malikova, N., I. Pastoriza-Santos, M. Schierhorn, N.A. Kotov, and L.M. Liz-Marzán, “Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles:  Control of Interparticle Interactions” Langmuir; 2002; 18: 3694-3697.
    19. Mittal, A.K., Y. Chisti, and U.C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts” Biotechnol Adv; 2013; 31: 346-356.
    20. Sharma, J., Y. Tai, and T. Imae, “Biomodulation approach for gold nanoparticles: synthesis of anisotropic to luminescent particles” Chem Asian J; 2010; 5: 70-73.
    21. Li, G., D. Li, L. Zhang, J. Zhai, and E. Wang, “One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake” Chemistry; 2009; 15: 9868-9873.
    22. Qian, J., X. Li, M. Wei, X. Gao, Z. Xu, and S. He, “Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging.” Optics express; 2008; 16: 19568-19578.
    23. Guo, J., K. Rahme, Y. He, L.L. Li, J.D. Holmes, and C.M. O'Driscoll, “Gold nanoparticles enlighten the future of cancer theranostics” Int J Nanomedicine; 2017; 12: 6131-6152.
    24. Wang, J., G. Zhang, Q. Li, H. Jiang, C. Liu, C. Amatore, and X. Wang, “In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters” Sci Rep; 2013; 3: 1157-1157.
    25. Bedford, E.E., J. Spadavecchia, C.M. Pradier, and F.X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles” Macromol Biosci; 2012; 12: 724-739.
    26. Zeng, S., K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications” Plasmonics; 2011; 6: 491-506.
    27. Brown, S.D., P. Nativo, J.-A. Smith, D. Stirling, P.R. Edwards, B. Venugopal, D.J. Flint, J.A. Plumb, D. Graham, and N.J. Wheate, “Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin.” J Am Chem Soc; 2010; 132: 4678-4684.
    28. Patra, C.R., R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer” Adv Drug Deliv Rev; 2010; 62: 346-361.
    29. Oh, N. and J.H. Park, “Endocytosis and exocytosis of nanoparticles in mammalian cells” Int J Nanomedicine; 2014; 9 Suppl 1: 51-63.
    30. Sahay, G., D.Y. Alakhova, and A.V. Kabanov, “Endocytosis of nanomedicines” J Control Release; 2010; 145: 182-195.
    31. Zhao, F., Y. Zhao, Y. Liu, X. Chang, C. Chen, and Y. Zhao, “Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials” Small; 2011; 7: 1322-1337.
    32. Hilgenbrink, A.R. and P.S. Low, “Folate receptor-mediated drug targeting: from therapeutics to diagnostics” J Pharm Sci; 2005; 94: 2135-2146.
    33. Yen, H.J., S.H. Hsu, and C.L. Tsai, “Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes” Small; 2009; 5: 1553-1561.
    34. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles” Small; 2007; 3: 1941-1949.
    35. Pan, Y., A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, and W. Jahnen-Dechent, “Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage” Small; 2009; 5: 2067-2076.
    36. Tsoli, M., H. Kuhn, W. Brandau, H. Esche, and G. Schmid, “Cellular uptake and toxicity of Au55 clusters” Small; 2005; 1: 841-844.
    37. Pernodet, N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich, “Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts” Small; 2006; 2: 766-773.
    38. Chithrani, B.D., A.A. Ghazani, and W.C. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.” Nano Lett; 2006; 6: 662-668.
    39. Gao, H., Shi, W., and L.B. Freund, “Mechanics of receptor-mediated endocytosis” Proc Natl Acad Sci; 2005; 102: 9469-9474.
    40. Cui, W., J. Li, Y. Zhang, H. Rong, W. Lu, and L. Jiang, “Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth” Nanomedicine; 2012; 8: 46-53.
    41. Xie, X., J. Liao, X. Shao, Q. Li, and Y. Lin, “The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles” Sci Rep; 2017; 7: 1-9.
    42. Mu, Q., D.L. Broughton, and B. Yan, “Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake.” Nano Lett; 2009; 9: 4370-4375.
    43. Aubin-Tam, M.E. and K. Hamad-Schifferli, “Gold nanoparticle− cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure.” Langmuir; 2005; 21: 12080-12084.
    44. Cho, E.C., J. Xie, P.A. Wurm, and Y. Xia, “Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant.” Nano Lett; 2009; 9: 1080-1084.
    45. Goodman, C.M., C.D. McCusker, T. Yilmaz, and V.M. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains” Bioconjug Chem; 2004; 15: 897-900.
    46. Hauck, T.S., A.A. Ghazani, and W.C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells” Small; 2008; 4: 153-159.
    47. Lin, J., H. Zhang, Z. Chen, and Y. Zheng, “Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.” ACS Nano; 2010; 4: 5421-5429.
    48. Connor, E.E., J. Mwamuka, A. Gole, C.J. Murphy, and M.D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity” Small; 2005; 1: 325-327.
    49. Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview” Langmuir; 2005; 21: 10644-10654.
    50. Lewinski, N., V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles” Small; 2008; 4: 26-49.
    51. Liu, D., J. Zhang, C. Yi, and M. Yang, “The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro” Chinese Sci Bull; 2010; 55: 1013-1019.
    52. Taton, T.A., “Boning up on biology” Nature; 2001; 412: 491-492.
    53. Ko, W.K., D.N. Heo, H.J. Moon, S.J. Lee, M.S. Bae, J.B. Lee, I.C. Sun, H.B. Jeon, H.K. Park, and I.K. Kwon, “The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells” J Colloid Interface Sci; 2015; 438: 68-76.
    54. Brannon-Peppas, L. and J.O. Blanchette, “Nanoparticle and targeted systems for cancer therapy” Adv Drug Deliv Rev; 2004; 56: 1649-1659.
    55. Dixit, V., J. Van den Bossche, D.M. Sherman, D.H. Thompson, and R.P. Andres, “Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells.” Bioconjug Chem; 2006; 17: 603-609.
    56. Hwang, S., J. Nam, S. Jung, J. Song, H. Doh, and S. Kim, “Gold nanoparticle-mediated photothermal therapy: current status and future perspective” Nanomedicine; 2014; 9: 2003-2022.
    57. Tong, L., Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei, and J.X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity” Adv Mater; 2007; 19: 3136-3141.
    58. Cole, J.R., N.A. Mirin, M.W. Knight, G.P. Goodrich, and N.J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications” J Phys Chem C; 2009; 113: 12090-12094.
    59. Li, Y., H.J. Schluesener, and S. Xu, “Gold nanoparticle-based biosensors” Gold Bull; 2010; 43: 29-41.
    60. Han, M.S., A.K. Lytton-Jean, B.K. Oh, J. Heo, and C.A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes” Angew Chem Int Ed Engl; 2006; 45: 1807-1810.
    61. Oh, E., M.Y. Hong, D. Lee, S.H. Nam, H.C. Yoon, and H.S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles” J Am Chem Soc; 2005; 127: 3270-3271.
    62. Katz, E., I. Willner, and J. Wang, “Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles” Electroanalysis; 2004; 16: 19-44.
    63. Aroca, R.F., R.A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J.V. Garcia-Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures” Adv Colloid Interface Sci; 2005; 116: 45-61.
    64. Gardiner, D.J. and P.R. Graves, Practical raman spectroscopy. Springer. 1989: 1-2.
    65. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. Wiley. 2019: 1-2.
    66. McCreery, R.L., “Raman Spectroscopy for Chemical Analysis” Meas Sci Technol; 2001; 12: 653-654.
    67. Stewart, S., D.A. Shea, C.P. Tarnowski, M.D. Morris, D. Wang, R. Franceschi, D.L. Lin, and E. Keller, “Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study” J Raman Spectrosc; 2002; 33: 536-543.
    68. Hashimoto, A., Y. Yamaguchi, L.D. Chiu, C. Morimoto, K. Fujita, M. Takedachi, S. Kawata, S. Murakami, and E. Tamiya, “Time-lapse Raman imaging of osteoblast differentiation” Sci Rep; 2015; 5: 12529-12537.
    69. Chiang, Y.H., S.H. Wu, Y.C. Kuo, H.F. Chen, A. Chiou, and O.K. Lee, “Raman spectroscopy for grading of live osteosarcoma cells” Stem Cell Res Ther; 2015; 6: 81-90.
    70. Kang, L.L., Y.X. Huang, and Z.J. Wu, “Study of spectrum processing method for Raman microscopy on single living cell.” Spectrosc Spectr Anal; 2011; 31: 408-411.
    71. Hart, R.M., J.G. Bergman, and A. Wokaun, “Surface-enhanced Raman scattering from silver particles on polymer-replica substrates” Opt Lett; 1982; 7: 105-107.
    72. Jeanmaire, D.L. and R.P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode” J Electroanal Chem; 1977; 84: 1-20.
    73. Moskovits, M., “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals” J Chem Phys; 1978; 69: 4159-4161.
    74. Koglin, E., J.M. Sequaris, and P. Valenta, “Surface Raman spectra of nucleic acid components adsorbed at a silver electrode” J Mol Struct; 1980; 60: 421-425.
    75. Cotton, T.M., S.G. Schultz, and R.P. Van Duyne, “Surface-enhanced resonance Raman scattering from water-soluble porphyrins adsorbed on a silver electrode” J Am Chem Soc; 1982; 104: 6528-6532.
    76. Holt, R.E. and T.M.v. Cotton, “Free flavin interference in surface enhanced resonance Raman spectroscopy of glucose oxidase” J Am Chem Soc; 1987; 109: 1841-1845.
    77. Liu, Z., C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy” Anal Chem; 2012; 84: 10338-10344.
    78. Hossain, M.K., H.Y. Cho, K.J. Kim, and J.W. Choi, “In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy” Biosens Bioelectron; 2015; 71: 300-305.
    79. Sathuluri, R.R., H. Yoshikawa, E. Shimizu, M. Saito, and E. Tamiya, “Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation” Plos One; 2011; 6: 1-13.
    80. Notingher, I., G. Jell, U. Lohbauer, V. Salih, and L.L. Hench, “In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering” J Cell Biochem; 2004; 92: 1180-1192.
    81. McManus, L.L., G.A. Burke, M.M. McCafferty, P. O'Hare, M. Modreanu, A.R. Boyd, and B.J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells” Analyst; 2011; 136: 2471-2481.
    82. Hashimoto, A., L.-d. Chiu, K. Sawada, T. Ikeuchi, K. Fujita, M. Takedachi, Y. Yamaguchi, S. Kawata, S. Murakami, and E. Tamiya, “In situRaman imaging of osteoblastic mineralization” J Raman Spectrosc; 2014; 45: 157-161.
    83. Elnakat, H. and M. Ratnam, “Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy” Adv Drug Deliv Rev; 2004; 56: 1067-1084.
    84. Matherly, L.H., Z. Hou, and Y. Deng, “Human reduced folate carrier: translation of basic biology to cancer etiology and therapy” Cancer Metastasis Rev; 2007; 26: 111-128.
    85. Zhang, Y., N. Kohler, and M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake” Biomaterials; 2002; 23: 1553-1561.
    86. Bharali, D.J., D.W. Lucey, H. Jayakumar, H.E. Pudavar, and P.N. Prasad, “Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy” J Am Chem Soc; 2005; 127: 11364-11371.
    87. Beik, J., M. Jafariyan, A. Montazerabadi, A. Ghadimi-Daresajini, P. Tarighi, A. Mahmoudabadi, H. Ghaznavi, and A. Shakeri-Zadeh, “The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement” Artif Cells Nanomed Biotechnol; 2018; 46: 1993-2001.
    88. Sun, C., R. Sze, and M. Zhang, “Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI” J Biomed Mater Res A; 2006; 78: 550-557.
    89. Zhang, Z., J. Jia, Y. Ma, J. Weng, Y. Sun, and L. Sun, “Microwave-assisted one-step rapid synthesis of folic acid modified gold nanoparticles for cancer cell targeting and detection” MedChemComm; 2011; 2: 1079-1082.
    90. Castillo, J., L. Bertel, E. Páez-Mozo, and F. Martínez, “Photochemical synthesis of the bioconjugate folic acid-gold nanoparticles” Nanomater Nanotechnol; 2013; 3: 1-6.
    91. Neshastehriz, A., M. Tabei, S. Maleki, S. Eynali, and A. Shakeri-Zadeh, “Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6MV X-ray on mouth epidermal carcinoma cells” J Photochem Photobiol B; 2017; 172: 52-60.
    92. Langille, M.R., M.L. Personick, J. Zhang, and C.A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles” J Am Chem Soc; 2012; 134: 14542-14554.
    93. Xie, J., J.Y. Lee, and D.I. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution” Chem Mater; 2007; 19: 2823-2830.
    94. Sajitha, M., A. Vindhyasarumi, A. Gopi, and K. Yoosaf, “Shape controlled synthesis of multi-branched gold nanocrystals through a facile one-pot bifunctional biomolecular approach” RSC Adv; 2015; 5: 98318-98324.
    95. Raisz, L.G., “Physiology and pathophysiology of bone remodeling” Clin Chem; 1999; 45: 1353-1358.
    96. Kostura, L., D.L. Kraitchman, A.M. Mackay, M.F. Pittenger, and J.W. Bulte, “Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis” NMR Biomed; 2004; 17: 513-517.
    97. Andreas, K., R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, and J. Ringe, “Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking” Biomaterials; 2012; 33: 4515-4525.
    98. Caplan, A.I. and S.P. Bruder, “Mesenchymal stem cells: building blocks for molecular medicine in the 21st century” Trends Mol Med; 2001; 7: 259-264.
    99. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, “Transcriptional control of osteoblast growth and differentiation” Physiol Rev; 1996; 76: 593-629.
    100. Liu, X., J. Cao, H. Li, J. Li, Q. Jin, K. Ren, and J. Ji, “Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo” ACS Nano; 2013; 7: 9384-9395.
    101. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, “Transcriptional control of osteoblast growth and differentiation” Physiological reviews; 1996; 76: 593-629.
    102. Ji, X., X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size Control of Gold Nanocrystals in Citrate Reduction:  The Third Role of Citrate” J Am Chem Soc; 2007; 129: 13939-13948.
    103. Meiser, F., C. Cortez, and F. Caruso, “Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles” Angew Chem Int Ed; 2004; 43: 5954-5957.
    104. Franca, A., B. Pelaz, M. Moros, C. Sanchez-Espinel, A. Hernandez, C. Fernandez-Lopez, V. Grazu, J.M. de la Fuente, I. Pastoriza-Santos, L.M. Liz-Marzan, and A. Gonzalez-Fernandez, “Sterilization matters: consequences of different sterilization techniques on gold nanoparticles” Small; 2010; 6: 89-95.
    105. Ross, K.F.A. and G. Galavazi, “The size of bacteria, as measured by interference microscopy.” J R Microsc Soc; 1965; 84: 13-25.
    106. Raouf, A.L.M., K. Hammud, J. Mahdi, and E.M.K. Dulimyi., “Qualitative and quantitative determination of folic acid in tablets by FTIR spectroscopy.” IJAPBC; 2014; 3: 773-780.
    107. Naraprawatphong, R., G. Kawanaka, M. Hayashi, A. Kawamura, and T. Miyata, “Development of protein-recognition SPR devices by combination of SI-ATRP with biomolecular imprinting using protein ligands” Mol Imprinting; 2016; 4: 21-30.
    108. Ross, J.F., P.K. Chaudhuri, and M. Ratnam, “Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications.” Cancer; 1994; 73: 2432-2443.
    109. Brigger, I., C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis” Adv Drug Deliv Rev; 2012; 64: 24-36.
    110. Albanese, A. and W.C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity” ACS Nano; 2011; 5: 5478-5489.
    111. Cedervall, T., I. Lynch, M. Foy, T. Berggard, S.C. Donnelly, G. Cagney, S. Linse, and K.A. Dawson, “Detailed identification of plasma proteins adsorbed on copolymer nanoparticles” Angew Chem Int Ed Engl; 2007; 46: 5754-5756.
    112. Absolom, D.R., W. Zingg, and A.W. Neumann, “Protein adsorption to polymer particles: role of surface properties.” J Biomed Mater Res; 1987; 21: 161-171.
    113. Chen, M.-S., C.-Y. Liu, and W.-T. Wang, “Probing Real-Time Response to Multitargeted Tyrosine Kinase Inhibitor 4-N-(3′-Bromo-Phenyl) Amino-6, 7-Dimethoxyquinazoline in Single Living Cells Using Biofuntionalized Quantum Dots” J Nanomed Nanotechnol; 2011; 2: 1-7.
    114. Hillaireau, H. and P. Couvreur, “Nanocarriers' entry into the cell: relevance to drug delivery” Cell Mol Life Sci; 2009; 66: 2873-2896.
    115. Zhao, H. and L.Y. Yung, “Selectivity of folate conjugated polymer micelles against different tumor cells” Int J Pharm; 2008; 349: 256-268.
    116. Tsai, S.W., J.W. Liaw, F.Y. Hsu, Y.Y. Chen, M.J. Lyu, and M.H. Yeh, “Surface-Modified Gold Nanoparticles with Folic Acid as Optical Probes for Cellular Imaging” Sensors; 2008; 8: 6660-6673.
    117. Adams, J.C. and F.M. Watt, “Regulation of development and differentiation by the extracellular matrix” Development; 1993; 117: 1183-1198.
    118. Chen, C.S., M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, “Geometric control of cell life and death” Science; 1997; 276: 1425-1428.
    119. Richter, L., V. Charwat, C. Jungreuthmayer, F. Bellutti, H. Brueckl, and P. Ertl, “Monitoring cellular stress responses to nanoparticles using a lab-on-a-chip” Lab Chip; 2011; 11: 2551-2560.
    120. Kneipp, K., A.S. Haka, H. Kneipp, K. Badizadegan, and N. Yoshizawa, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles.” Appl Spectrosc; 2002; 65: 150-154.
    121. Hanlon, E.B., R. Manoharan, T. Koo, K.E. Shafer, and J.T. Motz, “Prospects for in vivo Raman spectroscopy” Phys Med Biol; 2000; 45: 1-59.

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 2025/08/20 (校外網路)
    全文公開日期 2025/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE