簡易檢索 / 詳目顯示

研究生: 徐齊澤
CHI-TSE, HSU
論文名稱: 以聚醚胺改質雙馬來醯亞胺/N,N’-二丁基巴比妥酸 藥物傳遞之應用
N,N’-Bismaleimide-4,4-diphenylmethane / N,N’-Dibutylbarbituric Acid modified by Jeffamine for Drug Delivery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 邱信程
Hsin-Cheng Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 71
中文關鍵詞: 聚醚胺雙馬來醯亞胺N,N’ -二丁基 巴比妥酸巴比妥酸藥物傳遞
外文關鍵詞: Jeffamine (M-1000), N,N’ -Bismaleimide-4,4-diphenylmethane, N,N’ - Dibutylbarbituric Acid, barbituric Acid, Drug Delivery
相關次數: 點閱:626下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以雙馬來醯亞胺
(N,N ´ bismaleimide 4,4 ´ diphenylmethane, BMI) 與
N,N ´ 二丁基巴比妥酸 (N,N ´ Dibutylbarbituric Acid, DBB) 調整 B MI/ DBB 莫爾比
為 2/1 及 3/1 進行聚合反應 ,再使用 Jeffamine M 100 0 進行改質,分別添加
20%JF 、 30%JF 及 50%JF ,最後形成親水性之 BMI/DBB JF 樣品。
因本研究所合成之
BMI/DBB JF 具 有酸鹼應答性,其在低 pH 值時, JF
因而質子化,排斥力上升 使 粒徑上升;在高 pH 值時, JF 的立體障礙使粒徑
維持不變,故樣品包覆 DOX 後於低 pH 值時會因膨潤與質子化,而 釋放較多比
例之 DOX 藥物。

HeLa 細胞測試未包覆 DOX 之樣品,發現樣品 皆無明顯之細胞毒性;但
若將樣品包覆 DOX 則在高濃度下有明顯的細胞毒性,證明具有毒殺癌細胞的
功用。
另外於細胞吞噬實驗則能進一步了解包覆
DOX 之樣品因靜電作用力而吸
附於細胞周圍,並釋放 DOX 進入細胞核 故確定此一載體具有酸鹼應答性且
有應用在藥物載體之潛力。


In this study, we synthesis BMI/DBB hydrogel by N,N´ -bismaleimide-4,4´ -diphenylmethane (BMI) and N,N´-Dibutylbarbituric Acid (DBB), then graft with Jeffamine M-1000 (JF) to provide pH sensitive hydrogel.
In low pH, hydrogel swells as NH group of JF protonates, so the repulsive force is stronger. In contrast, in higher pH, diameter of hydrogel remains the same because of the steric hindrance of JF. Because of swelling and protonation in low pH, drug release percentage is higher than high pH.
There is no toxicity of BMI/DBB – JF hydrogel with Hela cell, but it has pronounced toxicity with Doxorubicin (DOX)loaded hydrogel.
The Cell uptake assay provides the mechanism of DOX loaded hydrogel with Hela cell, hydrogel adsorbs on the cell because of electrostatic attraction, and it releases DOX into nucleus to affect the Hela cell. According to experimental research, this pH sensitive hydrogel has the potential to be used in medical carrier field.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 2 第二章 文獻回顧 3 2.1. 微膠粒子 (Microgel particle) 與水膠 (Hydrogel) 3 2.1.1. 微膠粒子 (Microgel particle) 3 2.1.2. 微膠粒子製備 3 2.1.3. 微膠粒子之應用 4 2.1.4. 水膠 (Hydrogel) 5 2.1.5. 水膠分類 5 2.1.6 水膠的藥物釋放機制 7 2.2. 雙馬來醯亞胺 8 2.3. 巴比妥酸及衍生物 9 2.3.1. 巴比妥酸 (Barbituric acid, BTA) 9 2.3.2. N,N´-二丁基巴比妥酸 10 2.4. 雙馬來醯亞胺與N,N´-二丁基巴比妥酸聚合反應 10 2.4.1. 麥克加成反應 (Michael Reaction) 11 2.4.2. 自由基加成反應 (Free radical addition) 11 2.5. Jeffamine Polyetheramines (M- 1000) 12 第三章 實驗藥品、儀器與方法 14 3.1. 實驗藥品 14 3.1.1. 合成實驗 14 3.1.2. 配置緩衝液之藥品 (PBS) 18 3.1.3. 配置培養基之藥品 19 3.1.4. 配置藥物釋放緩衝溶液之藥品 21 3.1.5. MTT試劑 21 3.1.6. Doxorubicin Hydrochloride 22 3.1.7. 螢光染色之藥品 (Cell Uptake) 22 3.2. 實驗儀器 24 3.3. 實驗方法與內容 25 3.3.1. 合成N,N´- Dibutylbarbituric Acid (DBB) 25 3.3.2. 實驗內容 25 3.3.3. 實驗步驟 26 3.3.4. 實驗流程圖 28 3.3.5. 體外釋放實驗 (Drug delivery) 29 3.4. 體外細胞實驗 31 3.4.1. 細胞來源 31 3.4.2. 細胞繼代與培養 33 3.4.3. 培養基配置 34 3.4.4. 磷酸鹽緩衝液(phosphate-buffered saline, PBS)配置 36 3.4.5. Trypsin - EDTA配置 37 3.4.6. 細胞冷凍保存 37 3.4.7. 細胞解凍及培養 38 3.4.8. 細胞計數 38 3.4.9. 細胞毒性測試 (MTT Assay) 40 3.4.10. 細胞吞噬實驗 (Cell uptake assay) 43 3.5. 粒徑與表面電位實驗 44 第四章 結果與討論 45 4.1. DBB組成鑑定 45 4.2. 載體粒徑與表面電位 46 4.3. 樣品細胞毒性測試 50 4.3.1. DBB之細胞毒性測試 50 4.3.2. BMI/DBB - JF 之細胞毒性測試 51 4.4. 藥物釋放動力學 55 4.4.1. DOX藥物釋放實驗 55 4.4.2. DLE & DLC 56 4.4.3. BMI/DBB 2/1 57 4.4.4. BMI/DBB 3/1 59 4.5. 樣品包覆DOX之細胞毒性測試 61 4.6. 細胞吞噬實驗 (Cell uptake assay) 65 第五章 結論 66 第六章、參考文獻 67

[ ] Staudinger, H., and E. Husemann. "Über hochpolymere Verbindungen, 116.
Mitteil.: Über das begrenzt quellbare Poly‐styrol." Berichte der deutschen chemischen Gesellschaft (A and B Series) 68.8 (1935): 1618-1634.
[ ] Saunders, Brian R., and Brian Vincent. "Microgel particles as model colloids:
theory, properties and applications." Advances in colloid and interface science 80.1 (1999): 1-25.
[ ] Hoare, Todd R., and Daniel S. Kohane. "Hydrogels in drug delivery: Progress and challenges." Polymer 49.8 (2008): 1993-2007.
[ ] Li, Jianyu, and David J. Mooney. "Designing hydrogels for controlled drug
delivery." Nature Reviews Materials 1.12 (2016): 16071.
[ ] Erdem, Ahmet, Fahanwi Asabuwa Ngwabebhoh, and Ufuk Yildiz. "Synthesis, characterization and swelling investigations of novel polyetheramine-based hydrogels." Polymer Bulletin 74.3 (2017): 873-893.
[ ] Hoffman, Allan S. "Hydrogels for biomedical applications." Advanced drug delivery reviews 64 (2012): 18-23.
[ ] Zhang, Xian-Zheng, Da-Qing Wu, and Chih-Chang Chu. "Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels." Biomaterials 25.17 (2004): 3793-3805.
[ ] Liu, Wenguang, et al. "A rapid temperature-responsive sol–gel reversible poly
(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel." Biomaterials 25.15 (2004): 3005-3012.
[ ] Gerlach, Gerald, et al. "Application of sensitive hydrogels in chemical and pH sensors." Macromolecular Symposia. Vol. 210. No. 1. Weinheim: WILEY‐VCH Verlag, 2004.
[ ] Rizwan, Muhammad, et al. "pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications." Polymers 9.4 (2017): 137.
[ ] Triftaridou, Aggeliki I., et al. "Synthesis, characterization, and modeling of cationic amphiphilic model hydrogels: effects of polymer composition and architecture." Macromolecules 35.7 (2002): 2506-2513.
[ ] Brahim, Sean, Dyer Narinesingh, and Anthony Guiseppi-Elie. "Release characteristics of novel pH-sensitive p (HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate." Biomacromolecules 4.5 (2003): 1224-1231.
[ ] Khare, Atul R., and Nikolaos A. Peppas. "Release behavior of bioactive agents from pH-sensitive hydrogels." Journal of Biomaterials Science, Polymer Edition 4.3 (1993): 275-289.
[ ] Akala, Emmanuel O., Pavla Kopečková, and Jindřich Kopeček. "Novel pH-sensitive hydrogels with adjustable swelling kinetics." Biomaterials 19.11-12 (1998): 1037-1047.
[ ] Kim, Bumsang, Kristen La Flamme, and Nicholas A. Peppas. "Dynamic swelling behavior of pH‐sensitive anionic hydrogels used for protein delivery." Journal of Applied Polymer Science 89.6 (2003): 1606-1613.
[ ] Lin, Chien-Chi, and Andrew T. Metters. "Hydrogels in controlled release formulations: network design and mathematical modeling." Advanced drug delivery reviews 58.12-13 (2006): 1379-1408.
[ ] Gupta, Piyush, Kavita Vermani, and Sanjay Garg. "Hydrogels: from controlled release to pH-responsive drug delivery." Drug discovery today 7.10 (2002): 569-579.
[ ] Rao, KV Ranga, and K. Padmalatha Devi. "Swelling controlled-release systems: recent developments and applications." International Journal of Pharmaceutics 48.1-3 (1988): 1-13.

[ ] Depan, D., J. Shah, and R. D. K. Misra. "Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response." Materials Science and Engineering: C 31.7 (2011): 1305-1312.
[ ] Pascal, Thierry, Régis Mercier, and Bernard Sillion. "New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides. 1: Synthesis and characterization of starting components." Polymer 30.4 (1989): 739-744.
[ ] Wang, Chun Shan, and Ching Hsuan Lin. "Synthesis and properties of phosphorus containing copoly (bismaleimide)." Polymer 40.20 (1999): 5665-5673.
[ ] Iredale, Robert J., Carwyn Ward, and Ian Hamerton. "Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides." Progress in Polymer Science 69 (2017): 1-21.
[ ] Mison, Pierre, and Bernard Sillion. "Thermosetting oligomers containing maleimides and nadimides end-groups." Progress in Polyimide Chemistry I. Springer, Berlin, Heidelberg, 1999. 137-179.
[ ] Xiang, Z. D., and F. R. Jones. "Thermal degradation of an end-capped bismaleimide resin matrix (PMR-15) composite reinforced with pan-based carbon fibres." Composites science and technology 47.3 (1993): 209-215.
[ ] Kauffman, George B. "Adolf von Baeyer and the naming of barbituric acid." Journal of Chemical Education 57.3 (1980): 222.
[ ] Klikar, Milan, et al. "N, N′-Dibutylbarbituric acid as an acceptor moiety in push–pull chromophores." New Journal of Chemistry 37.12 (2013): 4230-4240.
[ ] Mahmudov, Kamran T., et al. "Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds." Coordination Chemistry Reviews 265 (2014): 1-37.
[ ] Chern, C. S., et al. "Understanding hyperbranched polymerization mechanisms." Plastics Research Online, Society of Plastics Engineers (SPE) 10 (2011).
[ ] Dix, Leslie R., et al. "Chain extension and crosslinking of telechelic oligomers—I. Michael additions of bisamines to bismaleimides and bis (acetylene ketone) s." European polymer journal 31.7 (1995): 647-652.

[ ] Sava, M., and C. V. Grigoras. "Bismaleimide monomers and polymers with ester and ether units. Synthesis and properties." Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 42.8 (2005): 1095-1108.
[ ] Shen, Zongwei, J. R. Schlup, and L. T. Fan. "Synthesis and characterization of leather impregnated with bismaleimide (BMI)–Jeffamine® resins." Journal of applied polymer science 69.5 (1998): 1019-1027.
[ ] Mather, Brian D., et al. "Michael addition reactions in macromolecular design for emerging technologies." Progress in Polymer Science 31.5 (2006): 487-531.
[ ] Jung, Michael E. "Stabilized nucleophiles with electron deficient alkenes and alkynes." (1991): 1-67.
[ ] Tokura, Seiichi, Shin-ichiro Nishimura, and Norio Nishi. "Studies on chitin IX. Specific binding of calcium ions by carboxymethyl-chitin." Polymer journal 15.8 (1983): 597.
[ ] Pavlinec, J., and N. Moszner. "Photocured polymer networks based on multifunctional β‐ketoesters and acrylates." Journal of applied polymer science 65.1 (1997): 165-178.
[ ] Crivello, J. V., D. A. Conlon, and S. T. Rice. "Bismaleimide-bisvinylether c opolymers: A new class of thermosetting resins." Polymer Bulletin 13.5 (1985): 409-415.
[ ] Brown, I. M., and T. C. Sandreczki. "Cross-linking reactions in maleimide and bis (maleimide) polymers. An ESR study." Macromolecules 23.1 (1990): 94-100.
[ ] Wade L. G., Organic Chemistry 5th Ed. Mechanism supplements origina, 2002.
[ ] Tsubokawa, Norio, Naohiro Shibata, and Yasuo Sone. "Radical polymerization of methyl methacrylate initiated by an enolizable ketone–carbon black system." Journal of Polymer Science: Polymer Chemistry Edition 21.2 (1983): 425-433.
[ ] Su, Heng‐Lei, et al. "Kinetic and structural studies of the polymerization of N, N′‐bismaleimide‐4, 4′‐diphenylmethane with barbituric acid." Polymer Engineering & Science 51.6 (2011): 1188-1197.
[ ] Khalid, S. H., et al. "Effect of degree of cross-linking on swelling and drug release behaviour of poly (methyl methacrylate-co-itaconic acid)[P (MMA/IA)] hydrogels for site specific drug delivery." Journal of Drug Delivery Science and Technology 19.6 (2009): 413.
[ ] Mahkam, Mehrdad, and Leila Doostie. "The relation between swelling properties and cross-linking of hydrogels designed for colon-specific drug delivery." Drug delivery 12.6 (2005): 343-347.
[ ] Klikar, Milan, et al. "Malonic Acid Derivatives on Duty as Electron –Withdrawing Units in Push–Pull Molecules." European Journal of Organic Chemistry 2017.19 (2017): 2764-2779.
[ ] Zhang S, Kuhn JR. Cell isolation and culture. In: WormBook: The Online
Review of C. elegans Biology [Internet]. Pasadena (CA): WormBook; 2005-2 018. Figure 4, Hemocytometer used for counting cells.
[ ] Righetti, Pier Giorgio, et al. "Protolytic equilibria of doxorubicin as determined by isoelectric focusing and ‘electrophoretic titration curves’." FEBS letters 101.1 (1979): 51-55.
[ ] Hung, Chia-Chian, et al. "Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy." Theranostics 6.3 (2016): 302.

無法下載圖示 全文公開日期 2024/10/25 (校內網路)
全文公開日期 2024/10/25 (校外網路)
全文公開日期 2024/10/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE