簡易檢索 / 詳目顯示

研究生: 李柏翰
Bo-Han Li
論文名稱: 具虛擬實境與外骨骼機構之上肢復健系統設計
Design of an Upper Limb Rehabilitation System with Virtual Reality and Exoskeleton Mechanism
指導教授: 陳羽薰
Yu-Hsun Chen
口試委員: 陳羽薰
Yu-Hsun Chen
徐冠倫
Kuan-Lun Hsu
李維楨
Wei-chen Lee
張秉純
Biing-Chwen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 89
中文關鍵詞: 虛擬實境復健醫療輔具遠端運動中心運動分析
外文關鍵詞: Virtual Reality, Rehabilitation, Assistive Devices, Remote Center of Motion, Motor Analysis
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在開發一虛擬實境與外骨骼機構整合的上肢復健系統,以應
對肩關節沾黏、肩夾擠症或是肩關節運動傷害會造成的肩、肘關節運動範
圍受限。由於傳統復健方法存在人力資源需求高、以及時間與空間限制等
問題,本系統旨在提供患者虛擬實境復健選項,在硬體部分提出具有遠端
運動中心機構的上肢外骨骼輔具,且具有關節運動角度量測、並可偵測聳
肩等代償動作之功能。硬體方面感測器測得的角度訊號透過 Arduino 介面
的訊號處理與控制系統傳輸以及拉線感測器讀取手部位置與確認是否有動
作代償。軟體方面則透過 Unreal 遊戲引擎設計視覺畫面的動作引導與關節
運動範圍確認回饋,並以遊戲形式引導患者執行復健動作。而遊戲部分測
定肩外展/內收、肩伸展/屈曲、肩外轉/內轉以及肘伸展/屈曲之復健動作,
且將上述動作結合於三個遊戲當中,並將量測的關節極限角度紀錄於後台
檔案之中,在後續可作為醫療的參考依據。藉由遊戲的獎勵機制提高患者
對復健的動力,同時降低對專業醫療人力的依賴。量測之關節運動數據可
便於醫師追蹤患者康復狀況,提高醫療系統的靈活性、可及性和運作效能。
在實驗方面,利用光學影像追蹤軟體換算人體運動角度,並與角度感測器
的讀取數值比對,發現因機構與人體肩關節會自然抬升,導致誤差值上升,
對此利用方程式補正,使最大誤差值降至 8%以下。其後,對兩位受測者進
行相同實驗,以確保方程式和裝置設計的可信度,結果顯示誤差值也在 7%
V
以下。此外,加入肩關節抬舉高度與運動角度的關係式,進一步提高裝置
的準確性。


This research aims to develop an upper limb rehabilitation system that
integrates virtual reality and exoskeleton mechanisms to address limitations in
shoulder and elbow joint mobility caused by conditions such as shoulder adhesion,
shoulder impingement syndrome, or shoulder sports injuries. Due to the high
demand for human resources and time and space constraints in traditional
rehabilitation methods, this system aims to provide patients with a virtual reality
rehabilitation option.
The hardware component includes an upper limb exoskeleton device with
joint motion angle measurement and shoulder shrugging detection capabilities.
The angle signals captured by sensors are processed and controlled through an
Arduino interface, while a string sensor reads hand position and checks for
compensatory movements.
On the software side, the Unreal game engine is employed to design visual
interfaces for guiding movements and providing feedback on joint motion ranges.
The system utilizes a gamified approach to guide patients through rehabilitation
exercises. The games measure shoulder abduction/adduction,shoulder
extension/flexion , shoulder external/internal rotation, and elbow
extension/flexion. These movements are incorporated into three games, with the
measured joint limit angles recorded in backend files for future medical reference.
The game's reward mechanism aims to increase patients' motivation for
rehabilitation while reducing dependence on professional medical personnel. The
VII
collected joint motion data facilitates tracking patient recovery progress and
enhances the flexibility, accessibility, and efficiency of the healthcare system.
In the experimental phase, optical tracking software was used to calculate
human body motion angles and compare them with sensor measurements. It was
found that due to the natural elevation of the shoulder joint during mechanism
movement, error values increased. To address this, a correction equation was
applied, reducing all error values to below 8%. Subsequently, the same
experiment was conducted on two subjects to ensure the reliability of the equation
and device design. Results showed error values below 7%. Additionally, a
relationship between shoulder joint elevation height and motion angle was
incorporated to further improve device accuracy.

摘要 II Abstract VI 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVII 1 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 4 2 第二章 文獻回顧 7 2.1 RCM機構 7 2.2 復健輔具 13 2.2.1平面機構式上肢復健輔具 13 2.2.2外骨骼式輔具 16 2.3 虛擬實境式復健裝置 18 3 第三章 研究方法 24 3.1 硬體設計 24 3.2 軟體設計 26 23.3 復健動作設計 27 3.4 成效評估 29 4 第四章 機構設計 31 4.1 RCM構型生成 31 4.2 尺寸設計 34 4.3 順向運動學位置分析 38 4.4 機械設計 41 5 第五章 訊號系統設計 45 5.1訊號處理 45 5.2 訊號補正 52 5.2.1 肩外展/內收訊號補正 53 5.2.2肩伸展/屈曲訊號補正 56 5.2.3肩外轉/內轉、肘伸展/屈曲訊號補正 58 5.3 遊戲設計 60 5.3.1 肩外展/內收、肘伸展/屈曲運動 63 5.3.2肩伸展/屈曲運動 65 5.3.3肩外轉/內轉運動 66 5.3.4 測試結果畫面 67 6 第六章 實驗驗證 70 6.1訊號驗證 70 6.2 聳肩驗證 78 7 第七章 結論與未來展望 81 7.1結論 81 7.2未來展望 82 8 參考文獻 84

[1] W. M. Chu et al., "Self-rated health trajectory and frailty among community-dwelling older adults: evidence from the Taiwan Longitudinal Study on Aging (TLSA)," (in eng), BMJ Open, vol. 11, no. 8, p. e049795, Aug 6 2021, doi: 10.1136/bmjopen-2021-049795.
[2] 行政院衛生福利部. "醫療機構現況及醫院醫療服務量統計." https://dep.mohw.gov.tw/DOS/lp-5099-113.html (accessed 07/27, 2021).
[3] 徐麟傑, "【五十肩】又痛又難活動!我想找回更年輕、健康的肩膀!!," in 成醫電子報 vol. 183期, ed: 國立成功大學醫學院附設醫院, 2022年5月.
[4] 何琨棟. "關節沾黏是什麼?常見的關節沾黏有 3 種!." DR.AIDEN. https://draiden.org/adhesive-joints/ (accessed 12/23, 2023).
[5] 李鑌. "我這是五十肩嗎?肩膀痛宜儘早接受專業治療." 安健維康物理治療所. https://www.ajwkptc.com/%E8%A1%9B%E6%95%99%E8%B3%87%E8%A8%8A/%E4%BA%94%E5%8D%81%E8%82%A9/?gclid=Cj0KCQiAkKqsBhC3ARIsAEEjuJiOP4jteFOjGhiAaSvUmIHLBsCAol7qezdtGBD3MX4ApxdLYhIB1b0aAjkOEALw_wcB (accessed 07/05, 2023).
[6] 曾渥然. "沾黏性關節囊炎(五十肩)漫談." 運動醫學,臺大醫院新竹台大分院骨科部. https://www.hch.gov.tw/?aid=626&pid=28&page_name=detail&iid=1137 (accessed 03/20, 2020).
[7] B. S. Brent and E. W. Kevin, 骨科復健手冊(袁立仁等譯;二版). 台灣愛思唯爾, 2008.
[8] 禾悦物理治療所. "肩膀痛一直好不了原來我是肩夾擠症候群!?" https://www.heyueptc.com/edu_athlete1.html (accessed.
[9] 唯心運動醫療體系. "棒球投手常見的運動傷害 | 運動傷害治療,桃園運動傷害治療." https://www.ohealth.com.tw/news/details.php?id=11442&group_id=2271 (accessed.
[10] M. J. Rosen, Telerehabilitation, . NeuroRehabilitation, 01/01/1999, pp. 11-26.
[11] A. N. Krichevets, E. B. Sirotkina, I. V. Yevsevicheva, and L. M. Zeldin, "Computer games as a means of movement rehabilitation," (in eng), Disabil Rehabil, vol. 17, no. 2, pp. 100-5, Feb-Mar 1995, doi: 10.3109/09638289509166635.
[12] O. Lambercy, A. Robles, Y. Kim, and R. Gassert, "Design of a robotic device for assessment and rehabilitation of hand sensory function," IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2011, p. 5975436, 06/01 2011, doi: 10.1109/ICORR.2011.5975436.
[13] M. Fontana, S. Fabio, S. Marcheschi, and M. Bergamasco, "Haptic Hand Exoskeleton for Precision Grasp Simulation," Journal of Mechanisms and Robotics, vol. 5, p. 041014, 11/01 2013, doi: 10.1115/1.4024981.
[14] V. Bartenbach, D. Wyss, D. Seuret, and R. Riener, "A lower limb exoskeleton research platform to investigate human-robot interaction," in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 11-14 Aug. 2015 2015, pp. 600-605, doi: 10.1109/ICORR.2015.7281266.
[15] S. Christensen and S. Bai, "A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons," in Wearable Robotics: Challenges and Trends, Cham, J. González-Vargas, J. Ibáñez, J. L. Contreras-Vidal, H. van der Kooij, and J. L. Pons, Eds., 2017// 2017: Springer International Publishing, pp. 51-56.
[16] Y. Lee et al., "Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2058-2069, 2017, doi: 10.1109/TMECH.2017.2718999.
[17] H. C. Hsieh, D. F. Chen, L. Chien, and C. C. Lan, "Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2034-2045, 2017, doi: 10.1109/TMECH.2017.2717874.
[18] M. Castro, J. Rasmussen, M. Andersen, and S. Bai, "A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications," Mechanism and Machine Theory, vol. 132, pp. 264-278, 02/01 2019, doi: 10.1016/j.mechmachtheory.2018.11.007.
[19] B. Chaparro-Rico, D. Cafolla, M. Ceccarelli, and E. Castillo Castaneda, "NURSE-2 DoF Device for Arm Motion Guidance: Kinematic, Dynamic, and FEM Analysis," Applied Sciences, vol. 10, p. 2139, 03/21 2020, doi: 10.3390/app10062139.
[20] M. Casadio, V. Sanguineti, P. Morasso, and V. Arrichiello, "Braccio di Ferro: A new haptic workstation for neuromotor rehabilitation," Technology and health care : official journal of the European Society for Engineering and Medicine, vol. 14, pp. 123-42, 02/01 2006, doi: 10.3233/THC-2006-14301.
[21] I. P. Corona-Acosta and E. Castillo-Castaneda, "Dimensional Synthesis of a Planar Parallel Manipulator Applied to Upper Limb Rehabilitation," in Multibody Mechatronic Systems, Cham, M. Ceccarelli and E. E. Hernández Martinez, Eds., 2015// 2015: Springer International Publishing, pp. 443-452.
[22] J. Yamine, A. Prini, M. L. Nicora, T. Dinon, H. Giberti, and M. Malosio, "A Planar Parallel Device for Neurorehabilitation," Robotics, vol. 9, no. 4, doi: 10.3390/robotics9040104.
[23] D. Koo, P. H. Chang, M. K. Sohn, and J. h. Shin, "Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation," in 2011 IEEE International Conference on Rehabilitation Robotics, 29 June-1 July 2011 2011, pp. 1-6, doi: 10.1109/ICORR.2011.5975505.
[24] K. Y. Wu, Y. Y. Su, Y. L. Yu, C. H. Lin, and C. C. Lan, "A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2684-2695, 2019, doi: 10.1109/TMECH.2019.2945491.
[25] 范堯中, "虛擬實境結合體感技術之肩關節復健系統之復健效果與運動分析研究," 碩士論文, 資訊工程學系, 國立中央大學, 桃園縣, 2013. [Online]. Available: https://hdl.handle.net/11296/84w4pp
[26] Y. Shih-Ching et al., "Virtual reality for post-stroke shoulder-arm motor rehabilitation: Training system & assessment method," in 2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom), 10-13 Oct. 2012 2012, pp. 190-195, doi: 10.1109/HealthCom.2012.6379398.
[27] 朱慶祥, "虛擬實境體感互動健身遊戲之應用," 碩士論文, 電子工程系, 中華科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/g2psdb
[28] S. H.Lee, S. C.Yeh, R. C.Chan, S.Chen, G.Yang, and L. R.Zheng, "Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation," (in eng), Biomed Res Int, vol. 2016, p. 7075464, 2016, doi: 10.1155/2016/7075464.
[29] R. G. Lee and S. C. Tien, "Augmented Reality Game System Design for Stroke Rehabilitation Application," in 2012 Fourth International Conference on Computational Intelligence, Communication Systems and Networks, 24-26 July 2012 2012, pp. 339-342, doi: 10.1109/CICSyN.2012.69.
[30] K. S. Lee, J. H. Park, J. Beom, and H. S. Park, "Design and Evaluation of Passive Shoulder Joint Tracking Module for Upper-Limb Rehabilitation Robots," (in eng), Front Neurorobot, vol. 12, p. 38, 2018, doi: 10.3389/fnbot.2018.00038.
[31] A. Carnevale et al., "Virtual Reality for Shoulder Rehabilitation: Accuracy Evaluation of Oculus Quest 2," Sensors, vol. 22, no. 15, doi: 10.3390/s22155511.
[32] J. Han, S. Lian, B. Guo, X. Li, and A. You, "Active rehabilitation training system for upper limb based on virtual reality," Advances in Mechanical Engineering, vol. 9, no. 12, p. 1687814017743388, 2017/12/01 2017, doi: 10.1177/1687814017743388.
[33] 貢以航, "虛擬實境之肩關節活動度與肌力訓練及自我檢測系統的成效分析與研究," 碩士論文, 資訊工程學系, 國立中央大學, 桃園縣, 2013. [Online]. Available: https://hdl.handle.net/11296/jt584d
[34] 謝怡君, "五十肩遠距復健系統之復健成效探討," 碩士論文, 資訊工程學系, 國立中央大學, 桃園縣, 2014. [Online]. Available: https://hdl.handle.net/11296/jqpcq7
[35] V. D. Tsakanikas et al., "Evaluating the Performance of Balance Physiotherapy Exercises Using a Sensory Platform: The Basis for a Persuasive Balance Rehabilitation Virtual Coaching System," (in English), Frontiers in Digital Health, Original Research vol. 2, 2020-November-27 2020, doi: 10.3389/fdgth.2020.545885.
[36] L. Xing, X. Wang, and J. Wang, "A motion intention-based upper limb rehabilitation training system to stimulate motor nerve through virtual reality," International Journal of Advanced Robotic Systems, vol. 14, p. 172988141774328, 11/26 2017, doi: 10.1177/1729881417743283.
[37] K. Duongmien, "MOTION PLANNING OF ASSISTIVE EXOSKELETON IN HUMAN’S LOCOMOTION REHABILITATION," 2021.
[38] A. Frisoli, A. Montagner, L. Borelli, F. Salsedo, and M. Bergamasco, "A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality," Applied Bionics and Biomechanics, vol. 6, pp. 115-126, 07/27 2009, doi: 10.1080/11762320902959250.
[39] X. Zhang, J. Zhang, L. Sun, and M. Li, "Rehabilitative motion planning for upper limb rehabilitation robot based on virtual reality," in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 12-14 Dec. 2013 2013, pp. 746-749, doi: 10.1109/ROBIO.2013.6739550.
[40] 顏鴻森, 機械裝置的創意性設計. 東華書局, 2013.
[41] 許馨予, "平行連桿型遠端運動中心機構之設計與應用," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/7e78dg
[42] S. H. Jang, Y. H. Kim, S. H. Cho, J. H. Lee, J. W. Park, and Y. H. Kwon, "Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients," (in eng), Neuroreport, vol. 14, no. 1, pp. 137-41, Jan 20 2003, doi: 10.1097/00001756-200301200-00025.
[43] T. C. Clinic. "BEGINNER WALL ANGEL POSTURAL EXERCISE." https://transformchiropractic.com/posture/beginner-wall-angel-postural-exercise/ (accessed 04/23, 2020).
[44] H. Health. "How to Do Wall Slides: A Hinge Health Guide." https://www.rehabmypatient.com/shoulder/deltoid (accessed 07/22, 2020).
[45] A. E. Engín, "On the biomechanics of the shoulder complex," (in eng), J Biomech, vol. 13, no. 7, pp. 575-90, 1980, doi: 10.1016/0021-9290(80)90058-5.
[46] M. H. Rahman, M. Saad, J. P. Kenné, and P. S. Archambault, "Modeling and control of a 7DOF exoskeleton robot for arm movements," in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 19-23 Dec. 2009 2009, pp. 245-250, doi: 10.1109/ROBIO.2009.5420646.
[47] R. Contini, "Body segment parameters. II," (in eng), Artif Limbs, vol. 16, no. 1, pp. 1-19, Spring 1972.
[48] 晉茂林著, 機器人學. 五南圖書出版股份有限公司, 2009.
[49] Y. Mao, X. Jin, G. G. Dutta, J. P. Scholz, and S. K. Agrawal, "Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 1, pp. 84-92, 2015, doi: 10.1109/TNSRE.2014.2329018.

無法下載圖示 全文公開日期 2029/08/20 (校內網路)
全文公開日期 2029/08/20 (校外網路)
全文公開日期 2029/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE