簡易檢索 / 詳目顯示

研究生: 江南蒨
Nan-Chian Chiang
論文名稱: 銦摻雜氧化鈰應用於二氧化碳脫氧反應的特性分析
Analysis of indium doped CeO2 for the oxygen stripping of CO2
指導教授: 林昇佃
Shawn D. Lin
口試委員: 游文岳
Wen-Yueh Yu
胡哲嘉
Chechia Hu
鍾博文
Po-Wen Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 128
中文關鍵詞: 二氧化碳脫氧反應氧化鈰氧空缺
外文關鍵詞: oxygen stripping of CO2, CeO2, oxygen vacancy
相關次數: 點閱:357下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以共沉澱法合成具有氧空缺之不同摻雜量的 In、Sm 修飾 CeO2 進行 CO2 脫氧反應。首先鑑定觸媒對於 H2-TPR 和 CO2-TPO 的 反應活性,CO2-TPO 結果顯示 SmyCe1-yOx 在測試溫度下無活性,In 摻 雜 CeO2 樣品,In0.2Ce0.8Ox 與 In0.5Ce0.5Ox 在 400 °C 至 600 °C 有 CO2 脫 氧反應活性,尤以 In0.5Ce0.5Ox 之 CO 產率最高。在重複反應條件與降 低 H2 還原溫度之實驗均顯示 In0.2Ce0.8Ox 與 In0.5Ce0.5Ox 在相同溫度仍 有相同的反應活性,其中 In0.5Ce0.5Ox 在重複兩次測試中仍舊維持近九 成的 CO 產率且無積碳現象。XRD 結果顯示 SmyCe1-yOx 在反應前後 維持相同的晶相,InyCe1-yOx 反應後由單晶相轉變為雙晶相,是為 H2- TPR 後出現之金屬 In0 提高觸媒之脫氧反應活性。由臨場紅外光譜儀 分析經 700 °C H2 還原之 CeO2、In2O3、In0.5Ce0.5Ox、Sm0.5Ce0.5Ox 上的 CO2 程溫吸附,結果顯示在 CeO2、Sm0.5Ce0.5Ox 上的吸附強,但吸附 CO2 時表面穩定而無法遷移氧離子,而在 In2O3、In0.5Ce0.5Ox 上的吸附 弱,且 In0.5Ce0.5Ox 有著和 In2O3 相似的吸附訊號,推論 CO2 脫氧反應 的主要關鍵為結構中的 In,且 CO2 脫氧反應主要是由表面活性點的 活性所決定。


In this study, we synthesized different ratio of Indium or Samarium doped CeO2 with oxygen vacancies by coprecipitation method. CO2-TPO results shows SmyCe1-yOx has no activity while In0.2Ce0.8Ox and In0.5Ce0.5Ox have CO2 deoxygenation from 400 °C to 600 °C. From 2 cycle test and reducing temperature of H2-TPR, In0.2Ce0.8Ox and In0.5Ce0.5Ox still have similar activity. There is no significant carbon deposition and almost 90% CO yield of In0.5Ce0.5Ox. XRD results shows that after CO2-TPO, SmyCe1-yOx has same crystal phase, while InyCe1-yOx has two separated phases. In-situ FTIR is used to analyze CO2 temperature-programmed adsorption on H2 reduced CeO2, In2O3, In0.5Ce0.5Ox, and Sm0.5Ce0.5Ox. CO2 adsorption on CeO2 and Sm0.5Ce0.5Ox are strong, however, catalysts surface are stable and has low oxygen mobility. CO2 adsorption on In2O3 and In0.5Ce0.5Ox are strong while there are similar peaks. It is suggested that metallic Indium appearing after H2-TPR enhanced deoxygenation activity.

摘要 ............................................................................................................I Abstract..................................................................................................... II 誌謝 ......................................................................................................... III 目錄 .........................................................................................................IV 圖目錄 .................................................................................................. VIII 表目錄 ................................................................................................... XII 第 1 章、 緒論 ....................................................................................... 1 1.1 前言.................................................................................................1 1.2 文獻回顧.........................................................................................2 1.2.1 CO2 轉化技術 ............................................................................ 2 1.2.2 CeO2 材料及摻雜物對氧空缺性質之影響 .............................. 4 1.2.3 CeO2 材料用於 CO2 轉化反應 .................................................. 6 1.3 研究目的.........................................................................................7 第 2 章、 實驗設備與方法 ................................................................... 8 2.1 實驗架構.........................................................................................8 2.2 藥品與儀器設備.............................................................................8 2.2.1 藥品...........................................................................................8 2.2.2 氣體...........................................................................................9 2.2.3 使用儀器.................................................................................... 9 2.3 觸媒製備.......................................................................................11 2.3.1 共沉澱法(Co-Precipitation)製備InyCe1-yOx觸媒.................11 2.3.2 共沉澱法(Co-Precipitation)製備SmyCe1-yOx觸媒...............11 2.4 觸媒特性分析方法.......................................................................13 2.4.1 X 光繞射儀 (XRD)................................................................. 13 2.4.2 表面積與孔隙度測定儀.........................................................13 2.4.3 程溫還原反應 Temperature Programmed Reduction (TPR) 14 2.4.4 質譜儀 (Mass Spectrometer, MS) ......................................... 15 2.4.5 熱重分析儀 (ThermogravimetricAnalyzer,TGA)...............16 2.4.6 臨 場 紅 外 線 光 譜 儀 (In-situ Fourier Transform Infrared Spectroscopy).................................................................................... 16 2.4.7 X 射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) ........................................................................................................... 17 2.5 CO2 脫氧反應測試實驗流程 ....................................................... 18 第 3 章、 結果與討論 ......................................................................... 19 3.1 摻雜成分對CeO2之CO2脫氧活性影響....................................19 3.1.1 結構特性分析.........................................................................19 3.1.2 H2-TPR 與 CO2-TPO 反應測試 .............................................. 31 3.2 觸媒氧氣空缺生成與活性的重複測試.......................................37 3.2.1 H2-TPR 900 °C/ CO2-TPO 700 °C 2 次循環測試 .................. 37 3.2.2 以 H2-TPR 700 °C/ CO2-TPO 700 °C 條件進行 2 次循環測試 ........................................................................................................... 42 3.3 CO2 脫氧反應測試前後觸媒結構特性變化 ................................ 48 3.4 觸媒於 CO2 脫氧反應活性之特性分析 ....................................... 68 3.4.1 臨場紅外線光譜應用於CO2脫氧反應分析........................69 3.4.1.1 CO2 於 CeO2 表面的吸附分析 ......................................... 69 3.4.1.2 CO2 於 In2O3 表面的吸附分析 ......................................... 74 3.4.1.3 CO2 於 In0.5Ce0.5Ox 吸附分析............................................ 78 3.4.1.4 CO2 於 Sm0.5Ce0.5Ox 吸附分析.......................................... 80 3.4.2 氧離子傳導性文獻分析.........................................................85 3.4.3 In2O3 導電性文獻分析 ............................................................ 93 第 4 章、 結論 ..................................................................................... 95 參考文獻 ................................................................................................. 97 第 5 章、 附錄 ................................................................................... 105

[1] S. Zhang, Q. Fan, R. Xia, T.J. Meyer, CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis, Accounts of Chemical Research, 53 (2020) 255-264.
[2] Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic‐level reactive sites for semiconductor‐based photocatalytic CO2 reduction, Advanced Energy Materials, 10 (2020) 1903879.
[3] O. Edenhofer, Climate change 2014: mitigation of climate change, Cambridge University Press2015.
[4] A.R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Electrochemical CO2 reduction (CO2 RR) to multi-carbon products over copper-based catalysts, Coordination Chemistry Reviews, 454 (2022) 214340.
[5] J. Zeng, W. Zhang, Y. Yang, D. Li, X. Yu, Q. Gao, Pd–Ag Alloy Electrocatalysts for CO2 Reduction: Composition Tuning to Break the Scaling Relationship, ACS Applied Materials & Interfaces, 11 (2019) 33074-33081.
[6] J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Applied Surface Science, 392 (2017) 658-686.
[7] T. Wang, X. Meng, G. Liu, K. Chang, P. Li, Q. Kang, L. Liu, M. Li, S. Ouyang, J. Ye, In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2, Journal of materials chemistry A, 3 (2015) 9491-9501.
[8] P. Djinović, J. Batista, A. Pintar, Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh–CeO2 catalyst, International Journal of Hydrogen Energy, 37 (2012) 2699-2707.
[9] N. Rui, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S.D. Senanayake, Y. Yang, J.A. Rodriguez, C.-J. Liu, Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization, Applied Catalysis B: Environmental, 282 (2021) 119581.
[10] C. Veranitisagul, N. Koonsaeng, N. Laosiripojana, A. Laobuthee, Preparation of gadolinia doped ceria via metal complex decomposition method: Its application as catalyst for the steam reforming of ethane, Journal of Industrial and Engineering Chemistry, 18 (2012) 898-903.
[11] J. Guo, Z. Shi, D. Wu, H. Yin, M. Gong, Y. Chen, Effects of Nd on the properties of CeO2–ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh, Journal of Alloys and Compounds, 621 (2015) 104-115.
[12] A. Bueno-López, Diesel soot combustion ceria catalysts, Applied Catalysis B: Environmental, 146 (2014) 1-11.
[13] T. Staudt, Y. Lykhach, N. Tsud, T. Skála, K.C. Prince, V. Matolín, J. Libuda, Ceria reoxidation by CO2: A model study, Journal of Catalysis, 275 (2010) 181-185.
[14] G.I. Siakavelas, N.D. Charisiou, A. AlKhoori, S. AlKhoori, V. Sebastian, S.J. Hinder, M.A. Baker, I.V. Yentekakis, K. Polychronopoulou, M.A. Goula, Highly selective and stable Ni/La-M (M=Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation, Journal of CO2 Utilization, 51 (2021) 101618.
[15] V.V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G.B. Marin, CeO2-Modified Fe2O3 for CO2 Utilization via Chemical Looping, Industrial & Engineering Chemistry Research, 52 (2013) 8416-8426.
[16] W. Wang, Y. Zhang, Z. Wang, J.-m. Yan, Q. Ge, C.-j. Liu, Reverse water gas shift over In2O3–CeO2 catalysts, Catalysis Today, 259 (2016) 402-408.
[17] 朱茲絜, 具氧空缺的氧化鈰觸媒應用於二氧化碳之氧脫除反應, 化學工程系, 國立臺灣科技大學, 台北市, 2016.
[18] 郭佳翰, 金屬修飾氧化鈰觸媒於中溫二氧化碳之脫氧反應, 化學工程系, 國立臺灣科技大學, 台北市, 2021.
[19] M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria, Langmuir, 27 (2011) 3872-3877.
[20] B. Liu, C. Li, G. Zhang, X. Yao, S.S.C. Chuang, Z. Li, Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods, ACS Catalysis, 8 (2018) 10446-10456.
[21] L. Zheng, T. Ma, Y. Zhao, Y. Xu, L. Sun, J. Zhang, X. Liu, Synergy between Au and In2O3 microspheres: A superior hybrid structure for the selective and sensitive detection of triethylamine, Sensors and Actuators B: Chemical, 290 (2019) 155-162.
[22] J. Chastain, R.C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 40 (1992) 221.
[23] S. Tan, L.B. Gil, N. Subramanian, D.S. Sholl, S. Nair, C.W. Jones, J.S. Moore, Y. Liu, R.S. Dixit, J.G. Pendergast, Catalytic propane dehydrogenation over In2O3–Ga2O3 mixed oxides, Applied Catalysis A: General, 498 (2015) 167-175.
[24] N.A. Ayub, H. Bahruji, A.H. Mahadi, Barium promoted Ni/Sm2O3 catalysts for enhanced CO2 methanation, RSC advances, 11 (2021) 31807-31816.
[25] D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences, 103 (2006) 3518-3521.
[26] Z.-J. Gong, Y.-R. Li, H.-L. Wu, S.D. Lin, W.-Y. Yu, Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst, Applied Catalysis B: Environmental, 265 (2020) 118524.
[27] K. Yoshikawa, H. Sato, M. Kaneeda, J.N. Kondo, Synthesis and analysis of CO2 adsorbents based on cerium oxide, Journal of CO2 Utilization, 8 (2014) 34-38.
[28] M. Li, U. Tumuluri, Z. Wu, S. Dai, Effect of dopants on the adsorption of carbon dioxide on ceria surfaces, ChemSusChem, 8 (2015) 3651-3660.
[29] E. Gonzalez-A, R. Rangel, A. Solís-Garcia, A.M. Venezia, T.A. Zepeda, FTIR investigation under reaction conditions during CO oxidation over Ru(x)-CeO2 catalysts, Molecular Catalysis, 493 (2020) 111086.
[30] 林若芸, 鐵鈰混合氧化物觸媒之氧空缺於二氧化碳脫氧反應的催化特性分析, 化學工程系, 國立臺灣科技大學, 台北市, 2021.
[31] B. Wulan, X. Cao, D. Tan, J. Ma, J. Zhang, To Stabilize Oxygen on In/In2O3 Heterostructure via Joule Heating for Efficient Electrocatalytic CO2 Reduction, Advanced Functional Materials, 33 (2023) 2209114.
[32] Y. Wang, J. Zhao, Y. Li, C. Wang, Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: Significant role of hydrogen adatom, Applied Catalysis B: Environmental, 226 (2018) 544-553.
[33] M. Grünbacher, B. Klötzer, S. Penner, CO2 Reduction by Hydrogen Pre‐Reduced Acceptor‐Doped Ceria, ChemPhysChem, 20 (2019) 1706-1718.
[34] Y.P. Fu, S.B. Wen, C.H. Lu, Preparation and characterization of samaria‐doped ceria electrolyte materials for solid oxide fuel cells, Journal of the American Ceramic Society, 91 (2008) 127-131.
[35] F. Trobec, V. Thangadurai, Transformation of Proton-Conducting Perovskite-Type into Fluorite-Type Fast Oxide Ion Electrolytes Using a CO2 Capture Technique and Their Electrical Properties, Inorganic Chemistry, 47 (2008) 8972-8984.
[36] F.-Y. Wang, B.-Z. Wan, S. Cheng, Study on Gd3+ and Sm3+ co-doped ceria-based electrolytes, Journal of Solid State Electrochemistry, 9 (2005) 168-173.
[37] X. Qi, Y. Lin, C. Holt, S. Swartz, Electric conductivity and oxygen permeability of modified cerium oxides, Journal of materials science, 38 (2003) 1073-1079.
[38] T. Yazawa, Y. Shibuya, R. Hida, A. Mineshige, Preparation of In2O3 crystals in phase separated structure of sodium borosilicate glass and its electrical conductivity, Materials Research Bulletin, 90 (2017) 87-93.
[39] J. Dean, Properties of atoms, radicals, and bonds, Lange’s handbook of chemistry, 15 (1999) 4.36-34.37.

QR CODE