簡易檢索 / 詳目顯示

研究生: 吳宛錚
Wan-cheng Wu
論文名稱: 微管陣列薄膜模組應用於生物反應器之探討
The applicability of microtube array membrane module for bioreactor
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 蘇清淵
Ching-Iuan Su
陳建中
Chien-Chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 65
中文關鍵詞: 微管陣列薄膜生物反應器氧電漿RGD三肽纖維母細胞
外文關鍵詞: microtube array membrane (MTAM), bioreactor, bioartificial liver (BAL), RGD-peptide
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚左旋乳酸(PLLA)為原料之微管陣列薄膜(microtube array membrane,MTAM),進行基本性質分析與表面改質,增加細胞貼附與成長,以應用於生物反應器 (bioreactor)之開發與使用。本研究中首先以SEM拍攝MTAM外觀結構,計算平均其纖維直徑,並以PMI測量孔洞大小及分佈性,以拉力試驗測試MTAM強度,以熱重分析儀 (TGA)及示差掃描熱分析儀(DSC)測定熱裂解溫度及熱性質變化。接著以氧電漿進行表面改質,並使用EDC/NHS coupling reaction進行接枝精胺酸-甘胺酸-天冬胺酸(RGD)三肽,以接觸角比較接枝前後之改變情況,以傅立葉傳換紅外光光譜儀(FT-IR)判斷RGD胜肽之接枝之官能基,以UV分析計算RGD胜肽接枝密度。最後進行細胞相容性測試,將纖維母細胞 (L929)培養於MTAM表面,進行細胞增生測試。
    生物反應器係以內徑16mm之聚甲基丙烯酸甲酯(PMMA)透明圓管作為外殼,用3D列印PLA製作黏接套件,以環氧樹脂組合成模組。其細胞毒性以L929纖維母細胞評估其生物相容性。生物反應器之效能,係於MTAM中空管狀處通入氣體,將纖維母細胞培養於MTAM表面,結果顯示細胞之增生率隨MTAM層數而增。因此,此MTAM生物反應器未來將可應用於生物性人工肝臟之領域。


    In this study, PLLA was electrospun into microtube array membrane (MTAM). The resulting MTAM was examined using SEM and PMI to calculate average fiber diameter and pore size, using tensile test to determine mechanical strength, using TGA and DSC to measure pyrolysis temperature and thermal properties. The surface of MTAM was treated by oxygen plasma to improve fibroblasts (L929) attachment and growth, followd by using EDC/NHS coupling reaction to graft RGD peptide on MTAM surfuce, and employing Fourier transform infrared spectroscopy (FT-IR) to determine the amide group, and dyeing test to measure the graft density, and using contact angle to determine hydrophilic properties. The biocompatibility was evaluated with fibroblasts.
    The housing of the bioreactor was made of PMMA transparent tube with inner diameter of 16mm. The PLA joints were fabricated by 3D printing and bonded with epoxy resins. The cytocompatibility was evaluated with fibroblasts. The performance of the bioreactor was evaluated by passing gas was put through the lumens of the microtube, and fibroblasts were seeded in the MTAM surface. The results show that the proliferation of fibroblasts increased with the number of MTAM layers. Thus this demonstrated the feasibility of MTAM bioreactor for bioartificial liver.

    摘要 Abstract 誌謝 (Acknowledgement) 目錄 (Content) 圖索引 (Figure Index) 表索引 (Table Index) 第一章 緒論 (Introduction) 1.1 研究背景 1.2 研究目的 第二章 文獻回顧 (Literature) 2.1 靜電紡絲 (Electrospinning) 2.1.1 靜電紡絲發展 2.1.2 靜電紡絲原理 2.1.3 靜電紡絲架設 2.1.4 靜電紡絲影響參數 2.1.5 中空纖維 (Hollow fiber) 2.1.6 微管陣列薄膜 (Microtube Array Membrane, MTAM) 2.2 生物反應器 (Bioreactor) 2.2.1 生物反應器介紹 2.2.2 生物反應器發展 2.3 實驗材料介紹 2.3.1 聚左旋乳酸(poly-L-lactic acid, PLLA) 2.3.2 聚環氧乙烷(poly(ethylene oxide), PEO) 2.3.3 精胺酸-甘胺酸-天冬胺酸 (Arginylglycylaspartic acid, RGD) 2.3.4 纖維母細胞 (Fibroblasts) 第三章 實驗 (Experiment) 3.1 實驗材料 3.2 實驗儀器 3.3 實驗流程 3.4 實驗原理及方法 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 3.4.2 孔洞分析 (Pore size) 3.4.3 熱重分析儀 (Thermogravimetric analyzer, TGA) 3.4.4 示差掃描熱分析儀(Differential Scanning Calorimetry, DSC) 3.4.5 拉力測試 (Tensile test) 3.4.6 降解測試 (Degradation test) 3.4.7 電漿處理系統 (Plasma treatment system) 3.4.8 EDC/NHS Coupling Reaction 3.4.9 傅立葉轉換紅外光光譜儀 (FT-IR) 3.4.10 紫外光-可見光譜儀 (UV-Visible spectrometer) 3.4.11 接觸角 (Contact angle) 3.4.12 細胞增生(Cell proliferation) 3.4.13 細胞毒性 (Cytotoxicity) 3.4.14 微觀分析 3.4.15 生物反應器 (Bioreactor) 第四章 結果與討論 (Results and Discussion) 4.1 物性分析 4.1.1 物理量測 4.1.2 熱重分析儀 (Thermogravimetric analyzer, TGA) 4.1.3 示差掃描熱分析儀(Differential Scanning Calorimetry, DSC) 4.1.4 拉力測試 (Tensile test) 4.1.5 降解測試 (Degradation test) 4.2 表面改質測試 4.2.1 電漿處理系統 (Plasma treatment system) 4.2.2 接觸角 (Contact angle) 4.2.3 傅立葉轉換紅外光譜 (FT-IR) 4.2.4 紫外光-可見光譜儀(UV-Visible spectrometer) 4.3 細胞相容性 4.3.1 細胞增生 (Cell proliferation) 4.3.2 微觀分析 4.4 生物反應器 (Bioreactor) 4.4.1 細胞毒性 (Cytotoxicity) 4.4.2 生物反應器 (Bioreactor) 第五章 結論 (Conclusion) 參考文獻 (Reference)

    [1] R. Williams, "Classification, etiology, and considerations of outcome in acute liver failure," Seminars in liver disease, vol. 16, 1996.
    [2] W. M. Lee, "Acute Liver Failure," New England Journal of Medicine, vol. 329, pp. 1862-1872, 1993.
    [3] G. Ostapowicz and W. M. Lee, "Acute hepatic failure a Western perspective," Journal of Gastroenterology and Hepatology, vol. 15, pp. 480-488, 2000.
    [4] F. D. Watanabe, C. J-P Mullon, W. R. Hewitt, N. Arkadopoulos, S. E. E. Kahaku, T. Khalili, et al., "Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial," Annals of Surgery, vol. 225, pp. 484-494, 1997.
    [5] C. Legallais, B. David, and E. Dore, "Bioartificial livers (BAL): current technological aspects and future developments," Journal of Membrane Science, 2001.
    [6] A. A. Demetriou, R. S. Brown, R. W. Busuttil, J. Fair, B. M. McGuire, P. Rosenthal, et al., "Prospective, Randomized, Multicenter, Controlled Trial of a Bioartificial Liver in Treating Acute Liver Failure," Annals of Surgery, vol. 239, pp. 660-670, 2004.
    [7] G. M. Bose, Recherches sur la cause et sur la veritable teorie de l'electricite publies par George Mathias Bose prof. en phisique: de l'imprimerie de Jean Fred. Slomac, 1745.
    [8] A. Formhals, "Method and apparatus for spinning," ed: US Patent 2,160,962, 1944.
    [9] A. Formhals, "Process and apparatus fob pbepabing," ed: U.S. Patent No. 1,975,504, 1934.
    [10] F. Anton, "Production of artificial fibers from fiber forming liquids," ed: US Patent 2,323,025, 1943.
    [11] G. Taylor, "Disintegration of water drops in an electric field," vol. 280, pp. 383-397, 1964.
    [12] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Colloid interface science, vol. 36, pp. 71-79, 1971.
    [13] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, p. 216, 1996.
    [14] T. J. Sill and H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, 2008.
    [15] J. Doshi and D. H Reneker, "Electrospinning process and applications of electrospun fibers," in Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, 1993, pp. 1698-1703.
    [16] S. Megelski, J. S. Stephens, D. B. Chase, and J. F Rabolt, "Micro-and nanostructured surface morphology on electrospun polymer fibers," Macromolecules, vol. 35, pp. 8456-8466, 2002.
    [17] Sander De Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, and K. D. Clerck, "The effect of temperature and humidity on electrospinning," Journal of materials science, vol. 44, pp. 1357-1362, 2009.
    [18] D. Li, J. T. McCann, and Y. Xia, "Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces," Small, vol. 1, pp. 83-86, Jan 2005.
    [19] I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R.Velarde-Ortiz, and G.Larsen, "Electrically Forced Coaxial Nanojets for One-Step Hollow Nanofiber Design," Journal of the American Chemical Society, vol. 126, pp. 5376-5377, 2004.
    [20] S. Zhan, D. Chen, and X. Jiao, "Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls," J Colloid Interface Sci, vol. 318, pp. 331-6, Feb 15 2008.
    [21] J. Di, H. Chen, X. Wang, Y. Zhao, L. Jiang, J. Yu, et al., "Fabrication of Zeolite Hollow Fibers by Coaxial Electrospinning," American Chemical Society, vol. 20, 2008.
    [22] T. T. T. Nguyen, O. H. Chung, and J. S. Park, "Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity," Carbohydrate Polymers, vol. 86, pp. 1799-1806, 2011.
    [23] A. Gabelmana and S.-T. Hwang, "Hollow fiber membrane contactors," Journal of Membrane Science, vol. 159, pp. 61-106, 1999.
    [24] K. Nagase, F. Kohori, and K. Sakai, "Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers," Biochemical Engineering Journal, vol. 24, pp. 105-113, 2005.
    [25] R. Prasad and K. K. Sirkar, "Dispersion-free solvent extraction with microporous hollow-fiber modules," AIChE Journal, vol. 34, pp. 177-188, 1988.
    [26] R. Basu and K. K. Sirkar, "Citric acid extraction with microporous bollow fibers," Solvent Extraction and Ion Exchange, vol. 10, pp. 119-143, 1992/02/01 1992.
    [27] L. Dahuron and E. L. Cussler, "Protein extractions with hollow fibers," AIChE J., vol. 34, pp. 130-136, 1988.
    [28] Z. Qi and E. L. Cussler, "Microporous hollow fibers for gas absorption i. Mass transfer inthe liquid," Journal of Membrane Science, vol. 23, pp. 321-332, 1985.
    [29] S. Karoort and K. K. Sirkar, "Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules," Ind. Eng. Chem. Res., vol. 32, pp. 674-684, 1993.
    [30] R. Prasad and K. K. Sirkar, "Hollow fiber solvent extraction: performances and design," Journal of Membrane Science, vol. 50, pp. 153-175, 1990.
    [31] R. Prasad and K. K. Sirkar, "Hollow fiber solvent extraction of pharmaceutical products: a case study," Journal of Membrane Science, vol. 47, pp. 235-259, 1989.
    [32] K. L. Ou, C. S. Chen, L. H. Lin, J. C. Lu, Y. C.Shu, W. C.Tseng, et al., "Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly(l-lactic acid) (PLLA) fibers," European Polymer Journal, vol. 47, pp. 882-892, 2011.
    [33] J. Gu, X. Shi, H. Ren, Q. Xu, J. Wang, J. Xiao, et al., "Systematic review: extracorporeal bio-artificial liver-support system for liver failure," Hepatology International, vol. 6, pp. 670-683, 2012.
    [34] B. Fremond, C. Malandain, C. Guyomard, C. Chesne, A. Guillouzo, and J. P. Campion, "Correction of bilirubin conjugation in the Gunn rat using hepatocytes immobilized in alginate gel beads as an extracorporeal bioartificial liver," Cell transplantation, vol. 2, pp. 453-460, 1992.
    [35] L. M. Flendrig, J. W. la Soe, G. G. A. Jorning, A. Steenbeek, O. T. Karlsen, W. M. M. J. Bovee, et al., " In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally wound nonwoven polyester matrix for hepatocyte culture as small aggregates," Journal of hepatology, vol. 26, pp. 1379-1392, 1997.
    [36] A. Kiani, R. R. Bhave, and and K. K. Sirkar, "Solvent Extraction with Immobilized Interfaces in a Microporous Hydrophobic Membrane," Journal of Membrane Science, vol. 20, p. 125, 1984.
    [37] A. Sechser, J. Osorio, C. Freise, and R. W. Osorio, "Artificial liver support devices for fulminant liver failure," Clinics in Liver Disease, vol. 5, 2001.
    [38] J. W. Allen, T. Hassanein, and S. N. Bhatia, "Advances in bioartificial liver devices," Hepatology, vol. 34, pp. 447-55, Sep 2001.
    [39] R. Cortesini , A. Vellucci , G. Cucchiara, A. Famulari , and C. Casciani, "Bio-artificial liver: a combined system of hemodialysis and baboon liver perfusion," Trans Am Soc Artif Intern Organs., vol. 19, pp. 365-369, 1973.
    [40] J. P Tharakan and P. C Chau, "A radial flow hollow fiber bioreactor for the large‐scale culture of mammalian cells," Biotechnology and bioengineering, vol. 28, pp. 329-342, 1986.
    [41] J. Rozga, M.D. Holzman, M. S. Ro, D. W. Griffin, D. F. Neuzil, A. D. M. T. Giorgio, et al., "Development of a hybrid bioartificial liver," Ann Surg., vol. 217, pp. 502-511, 1993.
    [42] S. L. Nyberg, R. Shatford, M. V. Peshwa, J. G. White, F. B. Cerra, and W. S. Hu, "Evaluation of a Hepatocyte-Entrapment Hollow Fiber Bioreactor: A potential Bioartificial Liver," Biotech Bioeng, vol. 41, pp. 194-203, 1993.
    [43] A. J. Ellis, R. D. Hughes, J. A. Wendon, G. T. Gislason, J. Dunne, P. G. Langley, et al., "Pilot-Controlled Trial of the Extracorporeal Liver Assist Device in Acute Liver Failure," 1996.
    [44] I. Jasmund , A. Langsch, R. Simmoteit, and A. Bader, "Cultivation of primary porcine hepatocytes in an OXY-HFB for use as a bioartificial liver device," Biotechnol. Prog, vol. 18, pp. 839-846, 2002.
    [45] A. Gautier, A. Ould-Dris, M. Dufresne, P. Paullier, B. V. Harten, H.-D.Lemke, et al., "Hollow fiber bioartificial liver: Physical and biological characterization with C3A cells," Journal of Membrane Science, vol. 341, pp. 203-213, 2009.
    [46] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.-S. Seo, et al., "Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications," Biomaterials, vol. 24, pp. 4977-4985, 2003.
    [47] J. M. Schakenraad, J. A. Oosterbaan, P. Nieuwenhuis, I. Molenaar, J. Olijslager, W. Potman, et al., "Biodegradable hollow fibres for the controlled release of drugs," biomaterials, vol. 9, pp. 116-120, 1988.
    [48] M. J. D. Eenink, J.Feijen, J. Olijslager, J. H. M. Albers, J. C. Rieke, and P. J. Greidanus, "Biodegradable hollow fibres for the controlled release of hormones," Journal of Controlled Release, vol. 6, pp. 225-247, 1987.
    [49] A. Moriya, T. Maruyama, Y. Ohmukai, T. Sotani, and H. Matsuyama, "Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods," Journal of Membrane Science, vol. 342, pp. 307-312, 2009.
    [50] H. Otsuka, Y. Nagasaki, and K. Kataoka, "Self-assembly of poly (ethylene glycol)-based block copolymers for biomedical applications," Current Opinion in Colloid & Interface Science, vol. 6, pp. 3-10, 2001.
    [51] W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, "Protein adsorption to poly (ethylene oxide) surfaces," Journal of biomedical materials research, vol. 25, pp. 1547-1562, 1991.
    [52] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. B. Tan, "Controlled deposition of electrospun poly (ethylene oxide) fibers," Polymer, vol. 42, pp. 8163-8170, 2001.
    [53] H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, "Electrospinning Bombyx mori silk with poly (ethylene oxide)," Biomacromolecules, vol. 3, pp. 1233-1239, 2002.
    [54] S. Nagaoka and A. Nakao, "Clinical application of antithrombogenic hydrogel with long poly (ethylene oxide) chains," Biomaterials, vol. 11, pp. 119-121, 1990.
    [55] M. D. Pierschbacher and E. Ruoslahti, "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule," Nature, vol. 309, pp. 30-33, 1984.
    [56] U. Hersel, C. Dahmen, and H. Kessler, "RGD modified polymers: biomaterials for stimulated cell adhesion and beyond," Biomaterials, vol. 24, pp. 4385-4415, 2003.
    [57] P. Schaffner and M. M. Dard, "Structure and function of RGD peptides involved in bone biology," Cellular and Molecular Life Sciences, vol. 60, pp. 119-132, 2003.
    [58] S. P. Massia, "Cell-extracellular matrix interactions relevant to vascular tissue engineering," Tissue Engineering of Prosthetic Vascular Grafts, 1999.
    [59] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, et al., "Induction of pluripotent stem cells from adult human fibroblasts by defined factors," Cell, vol. 131, pp. 861-72, Nov 30 2007.
    [60] C. Gagnadre, A. Caron, H. Guezenoc, and Y. Grohens, "Electron microscopy pictures, mathematical model and approximate solution of the surface potential," Kybernetes, vol. 38, pp. 780-788, 2009.
    [61] Y. Bisrat, C. C. Chen, Z. P. Luo, C. G. Chao, D. Davis, and D. Lagoudas, "Fabrication of Bi Nanowires Using a Vacuum Melting and Mechanical Injection Technique," pp. 21-24, 2006.
    [62] R. H. Hansen, J. V. Pascale, T. De Benedictis, and P. M. Rentzepis, "Effect of atomic oxygen on polymers," Journal of Polymer Science Part A: General Papers, vol. 3, pp. 2205-2214, 1965.
    [63] K. Fuwa and B. L. Valle, "The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law," Analytical Chemistry, 1963.
    [64] M. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding," Analytical Biochemistry, vol. 72, pp. 248-254, 1976.
    [65] X. Zonga, K. Kima, D. Fangb, S. Rana, B. S. Hsiaoa, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, vol. 43, pp. 4403-4412, 2002.
    [66] N. M. S. Bettahalli, H. Steg, M. Wessling, and D. Stamatialis, "Development of poly(l-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds," Journal of Membrane Science, vol. 371, pp. 117-126, 2011.

    無法下載圖示 全文公開日期 2019/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE