簡易檢索 / 詳目顯示

研究生: 許芷寧
Chih-Ning Hsu
論文名稱: 碳鋼中顯微組織對熱浸鍍鋁之作用
Effect of Microstructure on Hot-dip Aluminizing of Carbon Steel
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 雷添壽
Tien-Shou Lei
林招松
Chao-Sung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 135
中文關鍵詞: 碳鋼微結構熱浸鍍鋁Fe2Al5
外文關鍵詞: carbon steel, microstructure, hot dip Al, Fe2Al5
相關次數: 點閱:343下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用低碳鋼1005、中碳鋼1040以及高碳鋼1080之商用鋼料做為底材,再利用正常化、爐冷、水淬與球化等熱處理方法使其得到不同種微結構後進行700℃的熱浸鍍純鋁,探討碳鋼微觀組織對熱浸鋁時,鋁化層及外部鋁層成長之作用。
實驗結果顯示,熱浸鍍鋁後試片之塗層由外而內分別為外鋁層、鐵鋁介金屬層以及不同微結構組織之底材,其中鐵鋁介金屬層主要為Fe2Al5。碳鋼中的碳,無論是以固溶碳、球形雪明碳體或波來體的型式存在,均會阻礙Fe2Al5相的成長,因此鋼料之碳含量越低,Fe2Al5層之成長越多。Fe2Al5層之均勻性會被底材碳的分佈所影響,當碳的分佈越均勻,Fe2Al5層之厚度的變異量越小。影響外部鋁層厚度之最大因素為鋁層中碳化物的含量,外部鋁層之厚度隨鋼料內碳化物之增加而增厚,但其厚度變異量則不受鋼料內碳含量的影響,皆會隨熱浸時間的增加而縮小。


This experiment uses commercialized steel materials such as Mild Steel 1005, Medium Carbon Steel 1040 and High Carbon Steel 1080 as the substrate; then uses the heat treatment methods- normalizing, furnace cooling, quenching and spheroidizing to obtain various kinds of micro-structure. Finally, conducts 700℃ hot-dip aluminum, investigates the growth of aluminum layer and external aluminum layer on the carbon steel microstructure in hot dip aluminum.
The experiment results show that the specimen coatings in hot-dip aluminum, outer to inner layer are outer Al topcoat, Fe-Al intermetallic layer (mainly Fe2Al5), and various microstructures subtracts respectively. The carbon in the carbon steel, whether it is in the forms of carbon solid solution, spherical cementite or pearlite, all impede the growth of Fe2Al5, therefore the lower the carbon content in steel, the faster the Fe2Al5 layer grows. In addition, the uniformity of the Fe2Al5 layer is influenced by the distribution of the substrate carbon, the more uniform distribution of carbon, the smaller variance in Fe2Al5 layer thickness. Furthermore, the biggest factor affecting thickness of external aluminum layer is the amount of carbide in aluminum layer. The external aluminum layer thickness increases as the amount of carbide in steel material increases, while the thickness variances are not subject to amount of carbon in the steel materials, all specimen decrease in variance as increase in time of hot dip.

第一章 前言 第二章 文獻回顧 2.1 熱浸鍍鋁原理 2.1.1 成相 2.1.2 Fe2Al5相 2.2 熱浸中之擴散 2.2.1 熱浸時鋁化塗層之成長 2.2.2 熱浸後擴散之鋁化層的變化 2.3 影響熱浸鍍鋁之因素 2.3.1 溫度(Temperature) 2.3.2 時間(Time) 2.3.3 試片移出鋁湯速度 2.3.4 微觀結構之作用 2.4 熱處理後之相變化 2.4.1 正常化 2.4.2 淬火 2.4.3 球化 第三章 實驗方法 3.1 實驗流程 3.2 試片準備 3.3 高溫熱處理 3.3.1 正常化 3.3.2 爐冷 3.3.3 水淬 3.3.4 球化 3.4 熱浸鍍鋁作業 3.4.1 試片前處理 3.4.2 熱浸鍍鋁作業 3.4.3 試片後處理 3.5 實驗設備與分析 3.5.1 實驗設備 3.5.2 分析方法 第四章 前導熱處理實驗 4.1 正常化 4.1.1 片狀細微肥粒體 4.1.1.1 中碳鋼 1040 4.1.1.2 高碳鋼 1080 4.1.2 等相性粗晶組織 4.1.2.1 中碳鋼 1040 4.1.2.2 高碳鋼 1080 4.2 淬火 4.2.1中碳鋼1040 4.2.2高碳鋼1080 4.3 球化高碳鋼1080 第五章 熱浸鍍純鋁 5.1 實驗結果 5.1.1 低碳鋼1005 5.1.2 中碳鋼 1040 5.1.2.1 正常化 5.1.2.2 爐冷 5.1.2.3 水淬 5.1.3 高碳鋼1080 5.1.3.1 正常化 5.1.3.2 爐冷 5.1.3.3 水淬 5.1.3.4 球化 5.2 討論 第六章 結論 參考文獻

[1] C. J. Wang and C. C. Li, Surf. Coat. Technol. 177-178 (2003) 37.
[2] C. J. Wang and S. M. Chen, “The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel”, Surface and Coatings Technology, 200, 6601 (2006).
[3] T. Sasaki and T. Yakou, “Features of intermetallic compounds in aluminized steels formed using aluminum foil”, Surface and Coatings Technology, 201, 2131 (2006).
[4] T. L. Hu, H. L. Huang, D. Gan, and T. Y. Lee, “The microstructure of aluminized type 310 stainless steel”, Surface Coatings Technology, 201, 3509 (2006).
[5] K. Bouche, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum”, Materials Science and Engineering A, 249, 167 (1998).
[6] G. H. Awan and F. U. Hasan, “The morphology of coating/substrate interface in hot-dip –aluminizes steels”, Materials Science Engineering A, 472, 157 (2008).
[7] E. Frutos, J. L. Gonzalez-Carrasco, C. Capdevila, J. A. Jimenez, and Y. Houbaert, “Development of hard intermetallic coatings on austenitic stainless steel by hot dipping in an Al-Si alloy”, Surface Coating Technology, 203, 2916 (2009).
[8] 林盟斌,片狀石墨與球狀石墨鑄鐵塗覆鋁/鎳鋁塗層後之高溫氧化
與顯微結構博士學位論文,國立台灣科技大學機械所,民國100年12月。
[9] W. Gao and G. Li, “The Development and Application of Hot-Dip Aluminum Coating,” Heat Treatment of Metals, Vol.6, pp.11-15, June (1991).
[10] J.L. Murray and A.J. Mcalister, “Fe-AL Phase Diagrams,” Binary Alloy Phase Diagrams, P73 (1984).
[11] Wen-Ta Tsai, and Kuo-En Huang, “Microstructural Aspect and Oxidation Resistance of an Aluminide Coating on 310 Stainless Steel,” Thin Solid Films, PP.164-168 (2000).
[12] V.N. Yeremenko, Y.V. Natanzon, V.L. Dybkov, J. Mater. Sci.16, pp.88-93 (1981).
[13] M. Johnson, D.E. Mikkola, P.A. March, R.N. Wright, Wear 140 (1990).
[14] C.G. Mckamy, J.h. Devan, P.f. Tortorelli, V.K. Sikka, J. Mater. Res. 6, PP.695-707 (1991).
[15] J.R. Knibloe and R.N. Wright, C.L. Trybus, V. k. Sikka, J. Mater. Sci. 28, 2040 (1993).
[16] R.G. Baligidad, A. Radhakrishna, Mater. Sci. Eng. A287, PP.23-29 (2000).
[17] N.S. Stoloff, Mater. Sci. Eng. A258, PP.1-14 (1998).
[18] 張憲文,「熱浸覆蓋法(下)」,金屬表面技術雜誌,第87期, 第
62∼83頁, 民國75年5月。
[19] D. Wang and Z. Shi, “Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel”, Applied Surface Science, 227, 255 (2004).
[20] K. Stein-Fechner, J. Konys, and O. Wedemeyer, “Investigations on the transformation behavior of the intermetallic phase (Fe, Cr)2Al5 formed on MANET II steel by aluminizing”, Journal of Nuclear Materials, 249, 33 (1997).
[21] A. Bahadur and O. N. Mohanty, Materials Transaction, JIM, 32, 1053 (1991).
[22] D. Wang, Z. Shi, and L. J. Zou, “A liquid aluminum corrosion
resistance surface on steel substrate”, Applied Surface Science, 214
304 (2003).
[23] Ryabov, V.R. et al “The election beam welding of steel to aluminum”, Automatic Welding, Vol.28, No.10, pp.34-37 (1975).
[24] Toshiharu Kittaka,熔融Al熱浸鋼板,表面技術,第2卷,p169-177
(1991).
[25] R.W.Richards, R.D.Jones, P.D.Clements, and H. Clarke “Metallurgy
of continuous hot dip aluminizing” International Materials Reviews,
Vol.39, No.5, pp.191-198 (1994).
[26] S. Kobayashi and T. Yakou, “Control of intermetallic compound layers at interface betweeen steel and aluminum by diffusion-treatment”, Materials Science Engineering A, 338, 44 (2002).
[27] 鄭維仁、王朝正,以EBSD觀察低碳鋼熱浸鋁化層的成長行為,防蝕工程,第二十三卷,第二期,2009,第117-124頁。
[28] L. N. Larikov, V. M. Falchenko, D. F. Polishebuk, V. R. Ryabov, and A. V. Lonovskays, in: G. V. Samsonov (Ed.), Protective Coatings on Metals, vol. III, Consultant Bureau, New York, 1971, p. 56.
[29] S. G. Denner and R. D. Jones, Met. Technol. 4 (1977) 167.
[30] S. G. Denner, PhD thesis, University of Wales, Cardiff, (1976).
[31] N. A. EI-Mahallawy, M. A. Taha, M. A. Shady, A. R. EI-Sissi, A. N. Attia, and W. Reif, Mater. Sci. Technol. 13 (1997) 832.
[32] Smith, “Principles of Materials Science and Engineering”, 2Ed, McGraw-Hill Publishing Company, American, pp.843-844 (1990).
[33] G Eggler, H. Vogel and H.J. Kaesche, Parket Metallogr, Vol.22, pp.162-173 (1985).
[34] G. Langenscheid and G. klein, Prakt.Met, Vol.14, p.251 (1989)
[35] V.N. Eremenko and N.D. Lesnik, Ya. V. Natanzon, “Reaction between Aluminum and Iron as Related to Fusion Welding,” Automatic Welding, Vol.24, No.4, pp.15-18 (1971)
[36] 洪舜立,低碳鋼熱浸鍍鋁之研究,國立台灣工業技術學院機械
研究所碩士學位論文,民國82年7月。
[37] Takuro saga、Omi Miyakawa,The Behavior of Outer Aluminum Layer by Heating and its Influence on the Resistance Property to Oxidation,日本金屬學會誌,第22卷,P177-180 (1956)。
[38] Liu Bangjin and Li Rujie, “Hot-Dip Aluminizing of Steel Sheet By Flux Method Iron and Streel,” Heat Treatment of Metals, Vol.17, No.6, pp.41-48 (1982).
[39] A. Hrbek, “The Effect of Speed on the Thickness of the Coating Produced During Metallizing in Liquid Metals,” Metal Finishing Journal, pp.298-302 (1961).
[40] G. Neumann, in: H. Mehrer (Ed.), Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationships in Science and Technology, vol. 26, Springer, (1990).
[41] A.D. Le Claire, Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationships in Science and Technology, vol. 26, Springer, p. 129, (1990).
[42] R.W.K Honeycombe and H.K.D.H. Bhadeshia, "Steels", 2nd edition,
Edward Arnold(1995).
[43] Chandler and Harry, Heat Treater's Guide - Practices and Procedures for Irons and Steels, 2nd Edition, 1995 ASM International
[44] D.A. Porter & K.E. Easterling, "Phase Transformations in Metals &
Alloys", Chapters 5 and 6, Van Nostrand Rheinhold(1981).
[45] Leonard E. Samuels, Optical microscopy of carbon steels, Metals Park, Ohio : American Society for Metals(1980).
[46] R.E. Reed-Hill, "Physical Metallurgical Principles", Chapter 18&19,
Van Nostrand Rheinhold (1973).
[47] 鄭維仁、王朝正,防蝕工程,第22 卷,第4 期,2008,第287 ~ 294 頁。

[48] P. N. Bindumadhavan, S. Makesh, N. Gowrishankar, H. K. Wah, O. Prabhakar, Surf. Coat. Technol. 127 (2000) 252.
[49] A. Bouayad, Ch. Gerometta, A. Belkebir, A. Ambari, Kinetic interactions between solid iron and molten aluminium, Materials Science and Engineering: A, Volume 363, Issues 1–2, 20 December, Pages 53–61(2003).

QR CODE