簡易檢索 / 詳目顯示

研究生: 劉勵安
Li-an Liu
論文名稱: 高效率綠光有機發光二極體應用於串接結構之光電特性與連接層研究
The Study of Optoelectronic Characteristics and Charge Generation Mechanism in High Efficiency Green Organic Light-Emitting Diode with Tandem Structure
指導教授: 李志堅
Chih-chien Lee
口試委員: 徐世祥
Shih-hsiang Hsu
范慶麟
Ching-lin Fan
劉舜維
Shun-wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機電激發光二極體磷光串接結構
外文關鍵詞: OLED, phosphorescent, tandem
相關次數: 點閱:261下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是以串聯的概念,製作高效率之串聯式(tandem)有機發光二極體(Organic light emitting diode;OLED)元件,將上、下兩個相同的高效率綠光元件,以二極體n-type/p-type連接層連接起來,與傳統的有機電激發光二極體元件比較,在相同的電流密度下,串聯式元件擁有較高的發光效率。本實驗室原未發展過串聯式元件,此串座元件的開發則針對串接平台的建立,以及高效率串接元件兩大重點進行研究探討,本論文實驗主軸主要分為:(Ⅰ)以磷光材料Ir(ppy)3做為磷光電激發光材料,經由材料挑選與最佳化,製作出高效率綠光有機發光二極體。(Ⅱ)藉由文獻探討做為參考,選用n-doping/Metal Oxide做為串聯式元件的連接層,進行連接層研究與串接式結構平台建立。(Ⅲ)結合高效率綠光標準元件與發展出之串聯式結構,進行元件最佳化,製作出超高效率串聯式綠光元件。
(Ⅰ)經由材料挑選、能階匹配、發光層之摻雜濃度、厚度最佳化後的元件,其發光效率在100 cd/m2的亮度下,驅動電壓為3.7 V,電流效率63.8 cd/A;在1000 cd/m2的亮度下,驅動電壓為4.6 V,電流效率可達到60.0 cd/A。以上特性表現在小分子磷光綠光系統裡都是非常出色的。
(Ⅱ)藉由串接綠色與藍色發光元件之設計,來確保連接層前後之元件皆有得到載子並復合放光。再進行連接層的摻雜濃度與厚度最佳化,成功的建立了串接式結構製作平台,其串接效果,可達到理論電流效率疊加之效果。
(Ⅲ)在擁有良好基本元件以及確定連接層結構後,我們成功地將高效率標準元件與連接層做結合,串接出超高效率之綠光元件,此結構在1000 cd/m2的亮度下,可以達到98 cd/A之發光效率。


In this thesis, we produce high efficiency green organic light-emitting diode (OLED) with tandem structure based on the concept of tandem structure, and connect two identical high efficiency green light-emitting diodes (upper and lower) by n-type diode layer. Compared with traditional organic light emitting diode, stacked devices have higher emitting efficiency at the same current density. Our laboratory has no experience in establishing stacked device before; the development of stacked device mainly focuses on two issues: the establishment of tandem platform and high-efficiency stacked device. Experiments involved in the thesis mainly focus on: (Ⅰ)Taking phosphorescent material Ir(ppy)3 as the material of electrophosphorescence, and make high-efficiency organic green emitting diode by material selection and optimization(Ⅱ) Taking n-doping/Metal Oxide as the connecting layer of stacked devices as literature review suggests, and then analyze connecting layer and establish tandem platform.(Ⅲ)Proceeding device optimization by the combination of high-efficiency green emitting standard device and the tandem structure we established to produce super-efficient tandem green light-emitting devices.
(Ⅰ)After material selection, energy alignment and the optimization of thickness and impurity concentration in emitting layer, the current efficiency and driving voltage of stacked devices are 63.8 cd/A and 3.7 V respectively under the luminance of 100 cd/m2; The current efficiency and driving voltage of stacked devices are 60.0 cd/A and 4.6 V respectively under the luminance of 1000 cd/m2. The above-mentioned stats are very spectacular in small-moleculed phosphorescent green emitting system.
(Ⅱ)We make the devices before and after connecting layer have charge and recombine to emit by stacking green emitting device and blue emitting device. Afterward, we optimize the doped concentration and thickness, and successfully establish the manufacturing platform of stacked devices. The result of stacking can reach the effect in the theory of stacked current efficiency.
(Ⅲ)After possessing the premium basic devices and confirming the structure of connecting layer, we successfully connect high-efficiency devices and connecting layer, and stack the ultra-high-efficiency green emitting device. At the brightness of 1000 cd/m2, its current efficiency can reach 98 cd/A.

口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 總目錄 v 圖目錄 ix 表目錄 xv Chapter 1 緒論 1 1.1 前言 1 1.2 有機發光二極體的發展與歷史沿革 4 1.3 發光原理與機制 7 1.4 基本結構 9 1.5 串聯式有機發光二極體結構介紹 12 1.6 有機發光二極體元件材料介紹 34 1.6.1 陽極材料 35 1.6.2 電洞注入材料 35 1.6.3 電洞傳輸材料 36 1.6.4 電子傳輸材料 37 1.6.5 電子注入材料 38 1.6.6 陰極材料 38 1.6.7 連接層材料 38 1.7 研究動機 39 Chapter 2 理論基礎 41 2.1 有機半導體傳輸機制 41 2.2 有機材料的吸收與放射 44 2.3 有機發光二極體的效率 46 2.4 濃度淬息效應 49 2.5 連接層作用機制 50 Chapter 3 實驗流程與設備 53 3.1 實驗架構 53 3.2 實驗材料 54 3.2.1 基板 54 3.2.2 藥品 54 3.3 實驗設備 57 3.3.1 超音波清洗機 57 3.3.2 加熱板 57 3.3.3 旋轉塗佈機 57 3.3.4 紫外光曝光機 58 3.3.5 氧氣電漿清潔機 58 3.3.6 手套箱 59 3.3.7 機械手臂傳遞腔 60 3.3.8 熱蒸鍍機 61 3.3.9 膜厚量測系統 (α-Step ) 62 3.3.10 光電子光譜儀 (AC-2) 62 3.3.11 光電特性BJV量測系統 63 3.4 實驗步驟 64 3.4.1 ITO玻璃圖案化 64 3.4.2 ITO玻璃基板前處理 67 3.4.3 有機材料與金屬電極蒸鍍 67 3.4.4 元件封裝 69 Chapter 4 結果與討論 70 4.1 高效率綠光有機發光二極體最佳化 70 4.1.1 發光層材料與摻雜 70 4.1.2 Ir(ppy)3濃度最佳化 72 4.1.3 發光層厚度優化 74 4.1.4 電洞傳輸層與電子傳輸層優化 77 4.2 連接層研究與串接式結構平台建立 81 4.2.1 n-type層摻雜濃度最佳化 82 4.2.2 n-type層厚度優化 85 4.3 串接式高效率綠光磷光元件製作 88 4.3.1 BCP:CS2CO3摻雜濃度優化 89 4.3.2 不同n-type連接層材料比較 91 Chapter 5 結論 94 參考文獻 96 圖目錄 圖1.1 (a)Galaxy S2 (b)Galaxy tab by Samsung Corp.[3] (c)31’’OLED TV by LG Corp.[4] 2 圖1.2 2009東京燈飾展(a) 日本研究所有機電子(RIOE)耗電15W穿透度70%之照明磚 (b)Lumiotec厚度1.9 mm檯燈 (c)Sony高演色性(CRI)厚度1 mm檯燈[5] 3 圖1.3 蒽(Anthracene)的化學結構 4 圖1.4 有機材料Diamine的化學結構 5 圖1.5 雙層式有機發光二極體結構 5 圖1.6 共軛高分子PPV的化學結構 6 圖1.7 載子自電極注入 7 圖1.8 載子傳遞至接面 8 圖1.9 電子電洞堆積、再結合 8 圖1.10 有機發光二極體元件基本結構[18] 11 圖1.11 (a)基本元件E與串座元件G、F之電流效率 (b)基本元件I與串座元件J、K效率 (c)元件外部放光頻譜[24] 13 圖1.12 (a)元件使用材料之分子結構(b)基本元件與串座元件結構[29] 14 圖1.13 基本元件與串座元件之操作時間-亮度-操作電壓對應圖[29] 15 圖1.14 (a)連接層分別使用Alq3:Li/Mg:Ag、Alq3:Li/WO3以及Alq3:Li/HAT-CN之串座元件E、F、G (b)元件操作時間對亮度衰退圖[29] 16 圖1.15 HAT-CN吸收頻譜 17 圖1.16 串座元件結構[30] 18 圖1.17 各層能階與傳輸示意圖[30] 19 圖1.18 Bphen: Cs2CO3有機層厚度之UPS分析[30] 19 圖1.19 基本元件與串座元件結構(2-unit以及3-unit)[7] 20 圖1.20 (a)基本元件與串座元件電流效率(b)基本元件與串座元件外部放光頻譜[7] 21 圖1.21 (a)藍光基本元件與串座元件結構圖(b)材料分子結構[31] 22 圖1.22 藍光標準元件與串座元件之(a) J-V特性以及(b)電流效率圖[31] 23 圖1.23 白光元件結構:(a)雙發光層單一元件以及(b)雙色串座元件[31] 23 圖1.24 單一元件與串座元件之(a) J-V特性及(b)電流效率曲線[31] 25 圖1.25 單一元件及串座元件放光頻譜[31] 26 圖1.26 白光基本元件與兩白光元件串座結構圖[32] 27 圖1.27 基本元件與串座元件外部放光頻譜[32] 28 圖1.28 基本元件與串座元件J-V特性曲線[32] 29 圖1.29 以異質接面做為聯接層之(a)單一綠光元件(b)串接元件[33] 30 圖1.30 基本元件(藍色square)與兩種連接層串座元件ZnPC:C60/ MoO3(紅色circle)以及ZnPC:C60(綠色triangle)之J-V、B-V特性[33] 31 圖1.31 B-J特性、電流效率及功率效率特性圖[33] 31 圖1.32 兩種連接層製作串座元件之結構[34] 32 圖1.33 串座元件之J-V、B-V特性及效率比較[34] 33 圖1.34 電流效率、外部量子效率及放光頻譜圖[34] 33 圖1.35 電洞注入材料CuPC的化學結構 35 圖1.36 電洞傳輸材料(a)TPD與(b)NPB的化學結構 36 圖1.37 電子傳輸材料(a)Alq3與(b)Bebq2的化學結構 37 圖2.1 (a)鍵結模型(bond model)與(b)能帶模型(band model) 41 圖2.2 無機半導體載子傳輸示意圖 42 圖2.3 有機半導體載子傳輸示意圖 43 圖2.4 有機分子能階圖 44 圖2.5 元件外部放光流程圖 46 圖2.6 活性二聚物 (Excimer) 49 圖2.7 摻雜後有機材料能階示意圖 50 圖2.8 p-n Junction接觸後之能階示意圖 51 圖2.9 連接層載子產生注入示意圖 52 圖3.1 旋轉塗佈示意圖 58 圖3.2 手套箱構造圖 60 圖3.3 連結傳遞腔示意圖 61 圖3.4 熱蒸鍍機構造圖 62 圖3.5 微影蝕刻製程步驟 66 圖3.6 材料真空昇華示意圖 68 圖3.7 有機發光二極體元件的封裝示意圖 69 圖4.1 檀國大學研究團隊使用之綠光元件結構[46] 70 圖4.2 真空能階示意圖[46] 71 圖4.3 不同主體發光層摻雜Ir(ppy)3濃度對效率-電流特性 72 圖4.4 Takayuki Chiba等人發表之高效率綠光結構[12] 73 圖4.5 Ir(ppy)3濃度對效率-亮度特性 74 圖4.6 (a) 電壓-電流密度圖(b) 電流密度-效率圖 75 圖4.7 改變發光層厚度 電流-效率圖 76 圖4.8 改變發光層厚度 電壓-電流圖 77 圖4.9 改變傳輸層厚度 電流密度-效率圖 78 圖4.10 改變傳輸層厚度 電壓-電流密度圖 78 圖4.11 高效率綠光元件(a)結構及真空能階(b)三重態能階 79 圖4.12 Tae-Woo Lee等人發表之 (a)單一藍光元件(b)串接藍光元件[31] 81 圖4.13 藍光標準元件與串接元件之(a)電壓-電流密度(b)電壓-亮度(c)電流密度-效率(d)電壓-功率效率圖[31] 82 圖4.14 以藍綠光色做串接之結構 83 圖4.15 以藍綠光色做串接之頻譜變化 84 圖4.16 藍色螢光串接元件 85 圖4.17 單一元件與串接元件電壓-電流密度圖 86 圖4.18 單一元件與串接元件電流密度-效率圖 86 圖4.19 高效率串聯是綠光元件結構圖 88 圖4.20 串接式高效率綠光元件 電壓-電流密度圖 89 圖4.21 串接式高效率綠光元件 電流密度效率圖 89 圖4.22 串接式高效率綠光元件 亮度-效率圖 90 圖4.23 不同p-type連接層串接之高效率綠光元件 電壓-電流密度圖 91 圖4.24 不同p-type連接層串接之高效率綠光元件 電流密度-效率圖 91 圖4.25 不同p-type連接層串接之高效率綠光元件 亮度-效率圖 92 圖4.26 不同p-type連接層串接之高效率綠光元件頻譜圖 93 表目錄 表格1 1 基本元件與串座元件之特性整理 28 表格4 1 高效率綠光元件特性整理 80 表格4 2 基本元件與串接元件光電特性整理 87

參考文獻
[1] J. Shinar and R. Shinar, "Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview," J. Phys. D: Appl. Phys., 41, 133001 (2008).
[2] S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, 428, 911 (2004).
[3] http://www.samsung.com/
[4] http://www.lg.com/
[5] http://www.shopbiz.jp/en/lf/
[6] M. Pope, H. P. Kallmann and P. Magnante, "Electroluminescence in Organic Crystals," J. Chem. Phys., 38, 2042 (1963).
[7] W. Helfrich and W. G. Schneider, "Recombination Radiation in Anthracene Crystals," Phys. Rev. Lett., 14, 229 (1965).
[8] D. F. Williams and M. Schadt, "A simple organic electroluminescent diode," Proc. IEEE., 58, 476 (1970).
[9] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," Thin Solid Films, 94, 171 (1982).
[10] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., 51, 913 (1987).
[11] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks and K. Mackay, "Light-emitting diodes based on conjugated polymers," Nature, 347, 539 (1990).
[12] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, "Organic Electroluminescent Device with a Three-Layer Structure," Jpn. J. Appl. Phys., 27, L713 (1988).
[13] M. Era, C. Adachi, T. Tsutsui and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chem. Phys. Lett., 178, 488 (1991).
[14] J. Kido, M. Kohda, K. Okuyama and K. Nagai, "Organic electroluminescent devices based on molecularly doped polymers," Appl. Phys. Lett., 61, 761 (1992).
[15] J. Kido, M. Kimura and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science, 267, 1332 (1995).
[16] J. Kido, H. Shionoya and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett., 67, 2281 (1995).
[17] T. Chiba, Y.-J. Pu, R. Miyazaki, K.-i. Nakayama, H. Sasabe and J. Kido, "Ultra-high efficiency by multiple emission from stacked organic light-emitting devices," Org. Electron., 12, 710 (2011).
[18] 黃孝文 and 陳金鑫, "有機電激發光材料與元件," (2005).
[19] M. F. Lamorte and D. Abbott, "Analysis of AlGaAs-GaInAs cascade solar cell under AM 0-AM 5 spectra," Solid-State Electronics, 22, 467 (1979).
[20] J. K. Kim, E. Hall, O. Sjolund and L. A. Coldren, "Epitaxially-stacked multiple-active-region 1.55 mu m lasers for increased differential efficiency," Appl. Phys. Lett., 74, 3251 (1999).
[21] X. Guo, G.-D. Shen, G.-H. Wang, W.-J. Zhu, J.-Y. Du, G. Gao, D.-S. Zou, Y.-H. Chen, X.-Y. Ma and L.-H. Chen, "Tunnel-regenerated multiple-active-region light-emitting diodes with high efficiency," Appl. Phys. Lett., 79, 2985 (2001).
[22] Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest and M. E. Thompson, "Three-Color, Tunable, Organic Light-Emitting Devices," Science, 276, 2009 (1997).
[23] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi and J. Kido, Proceedings of IDMC'03, p.413 (2003).

[24] L. S. Liao, K. P. Klubek and C. W. Tang, "High-efficiency tandem organic light-emitting diodes," Appl. Phys. Lett., 84, 167 (2004).
[25] W. Gao and A. Kahn, "Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study," Appl. Phys. Lett., 79, 4040 (2001).
[26] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yoko and J. Kido, "Late-News Paper: Multiphoton Organic EL device having Charge Generation Layer," SID Int. Symp. Digest Tech. Papers, 34, 979 (2003).
[27] T. Tsutsui and M. Terai, "Electric field-assisted bipolar charge spouting in organic thin-film diodes," Appl. Phys. Lett., 84, 440 (2004).
[28] C.-C. Chang, S.-W. Hwang, C. H. Chen and J.-F. Chen, "High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units," Jpn. J. Appl. Phys., 43, 6418 (2004).
[29] L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks and D. L. Comfort, "Tandem Organic Light-Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector," Adv. Mater., 20, 324 (2008).
[30] S. Hamwi, J. Meyer, M. Kroger, T. Winkler, M. Witte, T. Riedl, A. Kahn and W. Kowalsky, "The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes," Adv. Funct. Mater., 20, 1762 (2010).
[31] T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D. W. Shin and J. Kido, "High-efficiency stacked white organic light-emitting diodes," Appl. Phys. Lett., 92, 043301 (2008).
[32] H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen and S. R. Forrest, "White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer," Adv. Mater., 18, 339 (2006).
[33] Y. Chen, J. Chen, D. Ma, D. Yan, L. Wang and F. Zhu, "High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer," Appl. Phys. Lett., 98, 243309 (2011).
[34] Y. Chen, J. Chen, D. Ma, D. Yan and L. Wang, "Tandem white phosphorescent organic light-emitting diodes based on interface-modified C[sub 60]/pentacene organic heterojunction as charge generation layer," Appl. Phys. Lett., 99, 103304 (2011).
[35] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials," Appl. Phys. Lett., 79, 2082 (2001).
[36] T. Ishida, H. Kobayashi and Y. Nakato, "Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements," J. Appl. Phys., 73, 4344 (1993).
[37] S. A. Van Slyke, C. H. Chen and C. W. Tang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett., 69, 2160 (1996).
[38] H. Zhang, Y. Dai and D. Ma, "High efficiency tandem organic light-emitting devices with Al/WO[sub 3]/Au interconnecting layer," Appl. Phys. Lett., 91, 123504 (2007).
[39] T.-Y. Cho, C.-L. Lin and C.-C. Wu, "Microcavity two-unit tandem organic light-emitting devices having a high efficiency," Appl. Phys. Lett., 88, 111106 (2006).
[40] M. V. M. Rao, T.-S. Huang, Y.-K. Su and Y.-T. Huang, "Fullerene and Pentacene as a Pure Organic Connecting Layer in Tandem Organic Light Emitting Devices," J. Electrochem. Soc., 157, H69 (2010).
[41] W. D. Gill, "Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole," J. Appl. Phys., 43, 5033 (1972).
[42] R. M. Glaeser and R. S. Berry, "Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models," J. Chem. Phys., 44, 3797 (1966).
[43] E. Pinotti, A. Sassella, A. Borghesi and R. Tubino, "Electrical characterization of organic semiconductors by transient current methods," Synth. Metals, 122, 169 (2001).
[44] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," J. Appl. Phys., 90, 5048 (2001).
[45] J. Brinstock, G. He, S.Murano, A. Werner and O. Zeika, Proceedings of SID’08, p822 (2008).
[46] J. G. Jang and H. K. Shin, "High efficiency green phosphorescent organic light emitting device with (TCTA/TCTA0.5TPBi0.5/TPBi): Ir(ppy)3 emission layer," Thin Solid Films, 517, 4122 (2009).

QR CODE