簡易檢索 / 詳目顯示

研究生: 高玉玲
Laurensia Nadya Widjaja
論文名稱: 微波輔助自磷石膏萃取稀土元素
Microwave-Assisted Extraction for Rare Earth Elements from Phosphogypsum
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
中文關鍵詞: 微波輔助提取磷石膏稀土元素恢復廢物
外文關鍵詞: Microwave-assisted extraction, Phosphogypsum, Rare earth elements, Recovery, Waste
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Phosphogypsum (PG) is a by-product of producing fertilizer from phosphate rock. By 2020, there will be over 600 Mt of PG in storage, with 75 Mt produced annually. However, a limited amount is reused. The majority of PG is stored in enormous stacks on surfaces. Due to the rapid increase of demand for rare earth elements (REEs), studies for secondary sources have received extensive research, and PG is one of the promising secondary sources of REEs owing to its significant content of REEs such as yttrium (Y), lanthanum (La), and neodymium (Nd).
The study investigated microwave-assisted extraction (MAE) for recovery of Y, La, and Nd from PG, while phosphorus (P) recovery was also assessed. The effects of acid type (HCl, H2SO4, HNO3), reaction temperature (100-150oC), acid concentration (0.25-1.0 N), solid concentration (10-40 g/L), and reaction time (5-30 min) on leaching efficiency were investigated. The addition of H2O2 was also investigated for possible applications of advanced oxidation processes (AOP) for REEs recovery from waste.
When using 1.0 N HCl, solid concentration of 20 g/L, 100oC, and reaction time of 5 min, leaching efficiency of 106.3% for Y, 102.0% for La, 99.8% for Nd, and 87.0% for P was found. The addition of H2O2, however, decreased leaching efficiency due to surface passivation by an oxide layer of zirconium (ZrO2). Simulation results also showed that recovery of P via selective precipitation was not feasible due to the high amount of Ca that interferes with the formation of struvite.


Phosphogypsum (PG) is a by-product of producing fertilizer from phosphate rock. By 2020, there will be over 600 Mt of PG in storage, with 75 Mt produced annually. However, a limited amount is reused. The majority of PG is stored in enormous stacks on surfaces. Due to the rapid increase of demand for rare earth elements (REEs), studies for secondary sources have received extensive research, and PG is one of the promising secondary sources of REEs owing to its significant content of REEs such as yttrium (Y), lanthanum (La), and neodymium (Nd).
The study investigated microwave-assisted extraction (MAE) for recovery of Y, La, and Nd from PG, while phosphorus (P) recovery was also assessed. The effects of acid type (HCl, H2SO4, HNO3), reaction temperature (100-150oC), acid concentration (0.25-1.0 N), solid concentration (10-40 g/L), and reaction time (5-30 min) on leaching efficiency were investigated. The addition of H2O2 was also investigated for possible applications of advanced oxidation processes (AOP) for REEs recovery from waste.
When using 1.0 N HCl, solid concentration of 20 g/L, 100oC, and reaction time of 5 min, leaching efficiency of 106.3% for Y, 102.0% for La, 99.8% for Nd, and 87.0% for P was found. The addition of H2O2, however, decreased leaching efficiency due to surface passivation by an oxide layer of zirconium (ZrO2). Simulation results also showed that recovery of P via selective precipitation was not feasible due to the high amount of Ca that interferes with the formation of struvite.

ABSTRACT i ACKNOWLEDGEMENT ii CONTENTS iii LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives of study 2 CHAPTER 2 LITERATURE REVIEW 1 2.1 Rare Earth Elements (REEs) 1 2.2 Phosphorus 3 2.3 Phosphogypsum 5 2.4 Recovery of P and REEs from PG 8 2.5 H2O2 11 2.6 Microwave-Assisted Extraction (MAE) 16 CHAPTER 3 MATERIALS AND METHODS 1 3.1 Materials and Reagents 1 3.2 Instruments 2 3.3 Methods 3 3.4 Thermodynamic modeling software PHREEQC 10 CHAPTER 4 RESULTS AND DISCUSSION 1 4.1 Characterization of Phosphogypsum 1 4.2 Microwave-assisted extraction (MAE) 7 4.3 Precipitation Simulation 28 4.5 Assessment of energy consumption 30 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 1 5.1 Conclusions 1 5.2 Recommendations 1 REFERENCES 1 APPENDIX 1

Alongi, K. S. & Shields, G. C., 2010. Chapter 8 - Theoretical calculations of acid dissociation constants: A review article. Annual Reports in Computational Chemistry, Volume 6, pp. 113-138. doi:https://doi.org/10.1016/S1574-1400(10)06008-1
American Chemical Society, 2004. CRC Handbook of Chemistry and Physics. 84 ed. doi:https://doi.org/10.1021/ja0336372
Amrani, M., Taha, Y., Kchikach, A., Benzaazoua, M., & Hakkou, R., 2020. Phosphogypsum recycling: New horizons for a more sustainable road material application. Journal of Building Engineering, Volume 30, p. 101267. doi:https://doi.org/10.3390/min9040237
Antonick, P. J., Hu, Z., Fujita, Y., Reed, D. W., Das, G., Wu, L., Shivaramaiah, R., Kim, P., Eslamimanesh, A., Lencka, M. M., Jiao, Y., Anderko, A., Navrotsky, A., & Riman, R. E., 2019. Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. The Journal of Chemical Thermodynamics, May, Volume 132, pp. 491-496. doi:https://doi.org/10.1016/j.jct.2018.12.034
Assefi, M., Maroufi, S., Yamauchi, Y. & Sahajwalla, V., 2020. Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A mini-review. Current Opinion in Green and Sustainable Chemistry , Volume 24, pp. 26-31. doi:https://doi.org/10.1016/j.cogsc.2020.01.005
Atia, T. A., Wouters, W., Monforte, G. & Spooren, J., 2021. Microwave chloride leaching of valuable elements from spent automotive catalysts: Understanding the role of hydrogen peroxide. Resources, Conservation and Recycling, Volume 166, p. 105349. doi:https://doi.org/10.1016/j.resconrec.2020.105349
Ayres, R., Holmberg, J. & B, A., 2001. Materials and the global environment: Waste mining in the 21st century. MRS Bulletin, Volume 26, p. 477. doi:https://doi.org/10.1557/mrs2001.119
Baffes, J. & Koh, W. C., 2022. Fertilizer prices expected to remain higher for longer. World Bank Blogs. https://blogs.worldbank.org/
Balaram, V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, pp. 1285-1303. doi:https://doi.org/10.1016/j.gsf.2018.12.005
Brückner, L., Elwert, T. & Schirmer, T., 2020. Extraction of rare earth elements from phosphogypsum: Concentrate digestion, leaching, and purification. Metals, Volume 10, p. 131. doi:https://doi.org/10.3390/met10010131
Canovas, C., Chapron, S., Arrachart, G. & Pellet-Rostaing, S., 2019. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. Journal of Cleaner Production, Volume 219, pp. 225-235. doi:https://doi.org/10.1016/j.jclepro.2019.02.104
Chen, M., He, Y. & Gu, Z., 2020. Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor. Separation and Purification Technology, Volume 250, p. 117111. doi:https://doi.org/10.1016/j.seppur.2020.117111
Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y., 2019. Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), pp. 2622-2646. doi:https://doi.org/10.1016/j.joule.2019.09.014
Chen, Y., Zhou, J., Zhang, L., Peng, J., Li, S., Yin, S., Yang, K., & Lin, Y., 2018. Microwave-assisted and regular leaching of germanium from the germanium-rich lignite ash. Green Processing and Synthesis, doi:https://doi.org/10.1515/gps-2017-0137
Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H., 2021. Phosphogypsum recycling: A review of environmental issues, current trends, and prospects. Applied Sciences, 11(4), p. 1575. doi:https://doi.org/10.3390/app11041575
Choi, S., Ilyas, S. & Kim, H., 2022. Intensive leaching of red phosphor rare earth metals from waste fluorescent lamp: Parametric optimization and kinetic studies. Recovery of Rare Earth and Critical Metals from Unconventional Sources, Volume 74, pp. 1054-1060. doi:https://doi.org/10.1007/s11837-021-05112-z
Chuyen, H. V., Nguyen, M, H., Roach, P. D., Golding, J. B., & Parks, S. E., 2017. Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), pp. 189-196. doi:https://doi.org/10.1002/fsn3.546
Daneshgar, S., Buttafava, A., Callegari, A. & Capodaglio, A., 2018. Simulations and laboratory tests for assessing phosphorus recovery efficiency from sewage sludge. Resources, Volume 7, p. 54. doi:https://doi.org/10.3390/resources7030054
de la Guardia, M. & Armenta, S., 2011. Greening sample treatments. Comprehensive Analytical Chemistry, Volume 57, pp. 87-120. doi:https://doi.org/10.1016/B978-0-444-53709-6.00005-7
de la Hoz, A., Diaz-Ortiz, A. & Prieto, P., 2016. Microwave-assisted green organic synthesis. Alternative Energy Sources for Green Chemistry, pp. 1-33. doi:https://doi.org/10.1039/9781782623632-00001
DeBeer, S., 2016. Advanced X-ray Spectroscopy
Dimitrijevic, M., Antonijevic, M. & Dimitrijevic, V., 1999. Investigation of the kinetics of pyrite oxidation by hydrogen peroxide in hydrochloric acid solutions. Minerals Engineering, Volume 12, pp. 165-174. doi:https://doi.org/10.1016/S0892-6875(98)00129-0
dos Santos, F., de Souza, C., Peixoto, R. & da Rocha, P., 2011. Copper extraction from electronic scraps by an oxidative acid leaching process. Vina del Mar, 6th International Seminar on Copper Hydrometallurgy.
Dutrizac, J., 2017. The behaviour of the rare earth elements during gypsum (CaSO4·2H2O) precipitation. Hydrometallurgy, Volume 174, pp. 38-46. doi:https://doi.org/10.1016/j.hydromet.2017.09.013
Fedorova, O., Vershinina, E., Krasitskaya, S. & Tananaev, I., 2020. Optimal monazite concentration processes for the extraction of uranium and thorium fuel material. Energies, 13(18), p. 4601. doi:https://doi.org/10.3390/en13184601
Garcia-Banos, B., Reinosa, J. J., Penaranda-Foix, F. L., Fernandez, J. F., & Catala-Civera, J. M., 2019. Temperature assessment Of microwave-enhanced heating processes. Scientific Reports. doi:https://doi.org/10.1038/s41598-019-47296-0
Gaustad, G., Eric, W. & Leader, A., 2021. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling, Volume 167, p. 105213. doi:https://doi.org/10.1016/j.resconrec.2020.105213
George, T., Hinsinger, P. & Turner, B., 2016. Phosphorus in Soils and Plants—Facing Phosphorus Scarcity. doi:https://doi.org/10.1007/s11104-016-2846-9
Golroudbary, S. R., el Wali, M. & Kraslawski, A., 2019. Environmental sustainability of phosphorus recycling from wastewater, manure and solid wastes. Science of The Total Environment, Volume 672, pp. 515-524. doi:https://doi.org/10.1016/j.scitotenv.2019.03.439
Greenwood, N. & Earnshaw, A., 1984. Chemistry of the elements. New York: Pergamon Press.
Grieken, R. V. & Markowicz, A., 2001. Handbook of X-Ray Spectrometry. 2 ed. New York: CRC Press.
Guerrero, J. L., Gutierrez-Alvarez, I., Mosqueda, F., Olias, M., Garcia-Tenorio, R., & Bolivar, J. P., 2019. Pollution evaluation on the salt-marshes under the phosphogypsum stacks of Huelva due to deep leachates. Chemosphere, Volume 230, pp. 219-229. doi:https://doi.org/10.1016/j.chemosphere.2019.04.212
Haase, S., Tolvanen, P. & Russo, V., 2022. Process intensification in chemical reaction engineering. Processes, Volume 10, p. 99. doi:https://doi.org/10.3390/pr10010099
Habashi, F., 1985. The recovery of lanthanides from phosphate rock. Journal of Chemical Technology and Biotechnology, Chemical Technology, 35A(1), pp. 5-14. doi:https://doi.org/10.1002/jctb.5040350103
Hammas-Nasri, I., Horchani-Naifer, K., Ferid, M. & Barca, D., 2016. Rare earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing, Volume 149, pp. 78-83. doi:https://doi.org/10.1016/j.minpro.2016.02.011
Hullar, T. & Anastasio, C., 2011. Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice. Atmospheric Chemistry and Physics, Volume 11, pp. 7209-7222. doi:https://doi.org/10.5194/acp-11-7209-2011
Hu, Q., He, Y., Wang, F., Wu, J., Ci, Z., Chen, L., Xu, R., Yang, M., Lin, J., Han, L., & Zhang, D., 2021. Microwave technology: a novel approach to the transformation of natural metabolites. Chinese Medicine. doi:https://doi.org/10.1186/s13020-021-00500-8
Innocenzi, V., Ippolito, N. M., Pietrelli, L. & Centofanti, M., 2018. Application of solvent extraction operation to recover rare earths from fluorescent lamps. Journal of cleaner production, 172(8). doi:https://doi.org/10.1016/j.jclepro.2017.11.129
Ismail, Z., Abu, E., Gasser, M., Aly, H., Abdel, H., & Ali, I., 2015. Leaching of some lanthanides from phosphogypsum fertilizers by mineral acids. Arab Journal of Nuclear Sciences and Applications, Volume 48, pp. 37-50.
Izatt, R. M., Izatt, S. R., Bruening, R. L., Izatt, N. E., & Moyer, B. A., 2013. Challenges to achievement of metal sustainability Q1 Q2. Chem Soc Rev, pp. 1-25. doi:https://doi.org/10.1039/C3CS60440C
Junior, A. B. B., Espinosa, D. C. R., Vaughan, J. & Tenorio, J. A. S., 2022. Extraction of rare-earth elements from silicate-based ore through hydrometallurgical route. Metals, Volume 12, p. 1133. doi:https://doi.org/10.3390/met12071133
Kamath, D., Mezyk, S. & Minakata, D., 2018. Elucidating the elementary reaction pathways and kinetics of hydroxyl radical-induced acetone degradation in aqueous phase advanced oxidation processes. Environmental Science Technology, 52(14), pp. 7763-7774. doi:https://doi.org/10.1021/acs.est.8b00582
Kapoore, R. V., Butler, T. O., Pandhal, J. & Vaidyanathan, S., 2018. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology, 7(1), p. 18. doi:https://doi.org/10.3390/biology7010018
Kaya, M., 2018. Current WEEE recycling solutions. In: Waste Electrical and Electronic Equipment Recycling. s.l.:Woodhead Publishing Series in Electronic and Optical Materials, pp. 33-93. doi:https://doi.org/10.1016/B978-0-08-102057-9.00003-2
Keil, F. J., 2017. Process intensification. Journal Reviews in Chemical Engineering. doi:https://doi.org/10.1515/revce-2017-0085
Kumari, A., Jha, M. K., Yoo, K., Panda, R., Lee, J. Y., Kumar, J. R., & Pathak, D. D., 2019. Advanced process to dephosphorize monazite for effective leaching of rare earth metals (REMs). Hydrometallurgy, Volume 187, pp. 203-211. doi:https://doi.org/10.1016/j.hydromet.2019.05.013
Lambert, A., Anawati, J., Walawalkar, M., Tam, J., & Azimi, G., 2018. Innovative application of microwave treatment for recovering of rare earth elements from phosphogypsum.. ACS Sustain Chem Eng, Volume 6, pp. 16471-16481. doi:https://doi.org/10.1021/acssuschemeng.8b03588
Lannoo, S., Vilas-Boas, A., Sadeghi, S. M., Jesus, J., & Soares, H. M. V. M., 2019. An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries. Journal of Cleaner Production, p. 117612. doi:https://doi.org/10.1016/j.jclepro.2019.117612
Laurino, J., Mustacato, J. & Huba, Z., 2019. Rare earth element recovery from acidic extracts of Florida phosphate mining materials using chelating polymer 1-octadecene, polymer with 2,5-furandione sodium salt. Minerals, Volume 9, p. 477. doi:https://doi.org/10.3390/min9080477
Lee, J., von Gunten, U. & Kim, J.-H., 2020. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54(6), pp. 3064-3081. doi:https://doi.org/10.1021/acs.est.9b07082
Li, B., Wang, X., Wei, Y., Wang, H., & Barati, M., 2018. Extraction of copper from copper and cadmium residues of zinc hydrometallurgy by oxidation acid leaching and cyclone electrowinning. Minerals Engineering, Volume 128, pp. 247-253. doi:https://doi.org/10.1016/j.mineng.2018.09.007
Lie, J. & Liu, J. C., 2021. Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent: Ascorbic acid. Separation and Purification Technology, Volume 266, p. 118458. doi:https://doi.org/10.1016/j.seppur.2021.118458
Lin, Y. P., Wu, S. C. & Huang, S. L., 2021. Effects of microwave-assisted extraction on the free radical scavenging and ferrous chelating abilities of monostroma nitidium extract. Journal of Marine Science and Technology, 21(5), p. 15. doi:https://doi.org/10.6119/JMST-012-0912-1
Li, S., Malik, M. & Azimi, G., 2022. Extraction of rare earth elements from phosphogypsum using mineral acids: Process development and mechanistic investigation. Industrial & Engineering Chemistry Research, 61(1), pp. 102-114. doi:https://doi.org/10.1021/acs.iecr.1c03576
Li, X., Zhou, Z., Zhao, G. & Liu, Z., 2008. Utilization of phosphogypsum for backfilling, way to relieve its environmental impact. Gospodarka Surowcami Mineralnymi, Volume 24, pp. 226-232.
Li, Y., Li, L., Chen, Z. X. & Zhang, J., 2017. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, Volume 192, pp. 372-378. doi:https://doi.org/10.1016/j.chemosphere.2017.10.126
Lokshin, E., Tareeva, O. & Elizarova, I., 2010. A study of the sulfuric acid leaching of rare-earth elements, phosphorus, and alkali metals from phosphodihydrate. Russian Journal of Applied Chemistry, Volume 83, pp. 958-964. doi:https://doi.org/10.1134/S1070427210060054
Lokshin, E., Vershkova, Y., Verhkov, A. & Tareeva, O., 2002. Leaching of lanthanides from phosphohemihydrate with nitric acid. Russian Journal of Applied Chemistry, Volume 75, pp. 1753-1759. doi:https://doi.org/10.1023/A:1022285330832
Lucas-Torres, C., Lorente, A., Cabanas, B. & Moreno, A., 2016. Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors. Journal of Cleaner Production, 138(1), pp. 59-69. doi:https://doi.org/10.1016/j.jclepro.2016.03.122
Lu, S., Xu, J., Bai, E., Liu, J., & Luo, X., 2017. Investigating microwave deicing efficiency in concrete pavement. RSC Advances, Volume 7, p. 9152. doi:https://doi.org/10.1039/C6RA27109J
Lütke, S. F., Oliveira, M. L. S., Silva, L. F. O., Cadaval Jr, T. R. S., & Dotto, G. L., 2020. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere, Volume 256, p. 127138. doi:https://doi.org/10.1016/j.chemosphere.2020.127138
Maezono, T., Tokumura, M., Sekine, M. & Kawase, Y., 2011. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere, Volume 82, pp. 1422-1430. doi:https://doi.org/10.1016/j.chemosphere.2010.11.052
Malhotra, A., Chen, W., Goyal, H., Plaza-Gonzalez, P. J., Julian, I., Catala-Civera, J. M., & Vlachos, D. G., 2021. Temperature homogeneity under selective and localized microwave heating in structured flow reactors. Industrial & Engineering Chemistry, 60(18), pp. 6835-6847. doi:https://doi.org/10.1021/acs.iecr.0c05580
Malyshev, A. S., Kirillov, S. V., Kirillov, E. V., Bunkov, G. M., Botalov, M. S., Smyshlyaev, D. V., & Rychkov, V. N., 2019. Influence of mechanoactivation on kinetics of REE leaching from phosphogypsum. AIP Conference Proceedings, Volume 2174, p. 020038. doi:https://doi.org/10.1063/1.5134189
Mao, Y., Robinson, J. & Binner, E., 2021. Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction. Chemical Engineering Science, Volume 233, p. 116418. doi:https://doi.org/10.1016/j.ces.2020.116418
Mashifana, T. P., 2019. Chemical treatment of phosphogypsum and its potential application for building and construction. Procedia Manufacturing, Volume 35, pp. 641-648. doi:https://doi.org/10.1016/j.promfg.2019.06.007
Masmoudi-Soussi, A., Hammas-Nasri, I., Horchani-Naifer, K. & Ferid, M., 2019. Study of rare earths leaching after hydrothermal conversion of phosphogypsum. Chemistry Africa, Volume 2, pp. 415-422. doi:https://doi.org/10.1007/s42250-019-00048-z
Masmoudi-Soussi, A., Hammas-Nasri, I., Horchani-Naifer, K. & Ferid, M., 2020. Rare earths recovery by fractional precipitation from a sulfuric leach liquor obtained after phosphogypsum processing.. Hydrometallurgy, Volume 191, p. 105253. doi:https://doi.org/10.1016/j.hydromet.2020.105253
Ma, Z., Yang, H., Huang, S., Lu, Y., & Xiong, L., 2015. Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime. International Journal of Minerals, Metallurgy and Minerals, 22(6), p. 582. doi:https://doi.org/10.1007/s12613-015-1110-2
Microwave Chemical Co. Ltd., 2014. Service and Technology. s.l.:s.n.
Mohammed, F., Biswas, W. K., Yao, H. & Tade, M., 2018. Sustainability assessment of symbiotic processes for the reuse of phosphogypsum. Journal of Cleaner Production, Volume 188, pp. 497-507. doi:https://doi.org/10.1016/j.jclepro.2018.03.309
Mokoena, D. P., Mngadi, S. V. & Nomngongo, P. N., 2020. Microwave-assisted extraction of trace metals from sediments using dilute hydrogen peroxide and dilute nitric acid prior to their determination by inductively couple plasma-optical emission spectrometry. Current Analytical Chemistry, 16(8), pp. 970-978. doi:https://doi.org/10.2174/1573411016666200318144655
Mukaba, J. L., Eze, C., Pereao, O. & Petrik, L. F., 2021. Rare earths’ recovery from phosphogypsum: An overview on direct and indirect leaching techniques. Minerals, 11(10), p. 1051. doi:https://doi.org/10.3390/min11101051
Nedelciu, C., Ragnarsdottir, K., Schlyter, P. & Stjernquist, I., 2020. Global phosphorus supply chain dynamics: Assessing regional impact to 2050. Global Food Security, September, Volume 26, p. 100426. doi:https://doi.org/10.1016/j.gfs.2020.100426
Nogueira, C., Paiva, A., Costa, M. & da Costa, A., 2019. Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environmental Technology, p. 3330. doi:https://doi.org/10.1080/09593330.2018.1563635
O'Connor, G. & Eksteen, J., 2020. A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching. Minerals Engineering, Volume 154, p. 106401. doi:https://doi.org/10.1016/j.mineng.2020.106401
Pandey, B., Abhilash & Meshram, P., 2020. An overview of the recent status of critical and strategic metal production and development in India. Critical and Rare Earth Elements. New York: CRC Press, pp. 1-36. doi:https://doi.org/10.1021/9780429023545-1
Parangusan, H., Bhadra, J. & Al Thani, N. S., 2021. A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emergent Materials, 4(2), pp. 1-17. doi:https://doi.org/10.1007/s42247-021-00194-6
Patel, A. & Dawson, R., 2015. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy, Volume 157, pp. 219-225. doi:https://doi.org/10.1016/j.hydromet.2015.08.008
Pędziwiatr, P., Mikolajczyk, F., Zawadzki, D., Mikolajczyk, K., & Bedka, A., 2018. Decomposition of hydrogen peroxide - kinetics and review of chosen catalysts. Acta Innovations, 26(45), pp. 45-52. doi:https://doi.org/10.32933/ActaInnovations.26.5
Pereira, W. V. S., Ramos, S. J., Melo, L. C. A., Braz, A. M. S., Dias, Y. N., Almeida, G. V., & Fernandes, A. R., 2022. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. Environmental Research, p. 113090. doi:https://doi.org/10.1016/j.envres.2022.113090
Pérez-López, R., Macias, F., Canovas, C. R., Sarmiento, A. M., & Perez-Moreno, S. M., 2016. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: an insight from geochemical signatures. Science of The Total Environment, Volume 553, pp. 42-51. doi:https://doi.org/10.1016/j.scitotenv.2016.02.070
Pham, V. & Ting, Y., 2009. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Advanced Materials Research, Volume 71-73, pp. 661-664. doi:https://doi.org/10.4028/www.scientific.net/AMR.71-73.661
Rayartoh, M. P., Aranvindakumar, C. T., Shah, N. S. & Boczkaj, G., 2021. Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal, 430(3), p. 133002. doi:https://doi.org/10.1016/j.cej.2021.133002
Rukhan, A. U., 2017. Microwave-assisted green extraction technology for sustainable food processing. Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing. doi:https://doi.org/10.5772/intechopen.76140
Rychkov, V., Kirillov, E., Kirillov, S. & Semenishchev, V., 2018. Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production, 196(4). doi:https://doi.org/10.1016/j.jclepro.2018.06.114
Samreen, S. & Kausar, S., 2019. Phosphorus fertilizer: The original and commercial Sources. Phosphorus. doi:https://doi.org/10.5772/intechopen.82240
Sathe, S., Chakraborty, I., Dubey, B. & Ghangrekar, M., 2022. Microbial fuel cell coupled Fenton oxidation for the cathodic degradation of emerging contaminants from wastewater: Applications and challenges. Environmental Research, Volume 204, p. 112135. doi:https://doi.org/10.1016/j.envres.2021.112135
Schott, C., Cunha, J. R., van der Weijden, R. D. & Buisman, C., 2022. Phosphorus recovery from pig manure: Dissolution of struvite and formation of calcium phosphate granules during anaerobic digestion with calcium addition. Chemical Engineering Journal, Volume 437, p. 135406. doi:https://doi.org/10.1016/j.cej.2022.135406
Serpe, A., Rigoldi, A., Marras, C., Artizzu, F., Mercuri, M. L., & Deplano, P., 2015. Chameleon behaviour of iodine in recovering noble-metals from WEEE: towards sustainability and “zero” waste. Green Chemistry, Volume 17, pp. 2208-2216. doi:https://doi.org/10.1039/C4GC02237H
Spooren, J. & Atia, T. A., 2020. Combined microwave assisted roasting and leaching to recover platinum group metals from spent automotive catalysts. Minerals Engineering, Volume 146, p. 106153. doi:https://doi.org/10.1016/j.mineng.2019.106153
Sun, J., Wang, W. & Yue, Q., 2016. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, Volume 9, p. 231. doi:https://doi.org/10.3390/ma9040231
Tayibi, H., Choura, M., Lopez, F. A., Alguacil, F. J., & Lopez-Delgado, A., 2009. Environmental impact and management of phosphogypsum. Journal of Environmental Management, Volume 90, pp. 2377-2386. doi:https://doi.org/10.1016/j.jenvman.2009.03.007
Thomas, R., Davidson, P., Rhede, D. & Leh, M., 2009. The miarolitic pegmatites from the Königshain: A contribution to understanding the genesis of pegmatites. Contributions to Mineralogy and Petrology , 157(4), pp. 505-523. doi:https://doi.org/10.1007/s00410-008-0349-2
Toache-Pérez, A. D., Lapidsu, G. T., Bolarin-Miro, A. M. & de Jesus, F. S., 2022. Selective leaching and recovery of Er, Gd, Sn, and In from liquid crystal display screen waste by sono-leaching assisted by magnetic separation. ACS Omega, 7(36), pp. 31897-31904. doi:https://doi.org/10.1021/acsomega.2c02729
Todorovsky, D., Terziev, A. & Milanova, M., 1997. Influence of mechanoactivation on rare earths leaching from phosphogypsum. Hydrometallurgy, Volume 45, pp. 13-19. doi:https://doi.org/10.1016/S0304-386X(96)00065-5
Turan, M. D., Sari, Z. A. & Miller, J. D., 2017. Leaching of blended copper slag in microwave oven. Transactions of Nonferrous Metals Society of China, 27(6), pp. 1404-1410. doi:https://doi.org/10.1016/S1003-6326(17)60161-4
Udayakumar, S., Rezan, S. A., Noor, A. N. M. & Putra, T., 2018. Characterization of Malaysian monazite concentrate for the recovery of thorium dioxide. Journal of Physics Conference Series , 1082(1), p. 012090. doi:https://doi.org/10.1088/1742-6596/1082/1/012090
USGS, 2022a. Phosphate Rock: Statistics and Information, s.l.: National Minerals Information Center.
USGS, 2022b. Rare Earths: Mineral Commodity Summaries, s.l.: National Minerals Information Center.
Van Gerven, T. & Stankiewicz, A., 2009. Structure, energy, synergy, time the fundamentals of process intensification. Industrial &Eengineering Chemistry Research, Volume 48, pp. 2465-2474. doi:https://doi.org/10.1021/ie801501y
Van Gosen, B. S., Verplanck, P. L., Seal II, R. R., Long, K. R., & Gambogi, J., 2017. Rare Earth Elements.
Vanwinkle, J., 1999. Mechanism of the passivation of zirconium in low pH solutions. Oregon Graduate Institute of Science and Technology ProQuest Dissertations Publishing
Villalba, G., Liu, Y., Schroder, H. & Ayres, R. U., 2008. Global phosphorus flows in the industrial economy from a production perspective. Journal of Industrial Ecology, 12(4), pp. 557-569. doi:https://doi.org/10.1111/j.1530-9290.2008.00050.x
Walawalkar, M., Nichol, C. K. & Azimi, G., 2016. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, Volume 166, pp. 195-204. doi:https://doi.org/10.1016/j.hydromet.2016.06.008
Wang, J. L. & Xu, L. J., 2012. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), pp. 251-325. doi:https://doi.org/10.1080/10643389.2010.507698
Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., & Zhang, L., 2018. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chemical Engineering Journal, Volume 335, pp. 774-800. doi:https://doi.org/10.1016/j.cej.2017.10.143
Xia, H., Li, C., Yang, G., Shi, Z., Jin, C., He, W., Xu, J., & Li, G., 2022. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere, Volume 287, p. 131981. doi:https://doi.org/10.1016/j.chemosphere.2021.131981
Yahorava, O., 2016. Viability of phosphogypsum as a secondary resource of rare earth elements. Quebec, IMPC 2016: XXVIII International Mineral Processing Congress.
Yau, T., 1996. Corrosion of zirconium. In: The Corrosion Engineering Handbook. New York: Dekker, pp. 195-252.
Yin, X., Tian, X., Wu, Y., Zhang, Q., Wang, W., Li, B., Gong, Y., & Zuo, T., 2018. Recycling rare earth elements from waste cathode ray tube phosphors: Experimental study and mechanism analysis. Journal of Cleaner Production, Volume 205, pp. 58-66. doi:https://doi.org/10.1016/j.jclepro.2018.09.055
Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y. N., & Zuo, T. 2016. Green recovery of rare earths from waste cathode ray tube phosphors: Oxidative leaching and kinetic aspects. ACS Sustainable Chemistry & Engineering, Volume 4, pp. 7080-7089. doi:https://doi.org/10.1021/acssuschemeng.6b01965
Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H., 2020. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, Volume 95, pp. 183-195. doi:https://doi.org/10.1016/j.tifs.2019.11.018
Zhang, Y., Zhang, B., Yang, S., Zhong, Z., Zhou, H., & Luo, X., 2021. Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant. International Journal of Mining Science & Technology, Volume 31, pp. 995-1002. doi:https://doi.org/10.1016/j.ijmst.2021.06.002
Zhao, Y., Pohl, O., Bhatt, A. I., Collis, G. E., Mahon, P. J., Ruther, T., & Hollenkamp, A. F., 2021. A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2(1), pp. 167-205. doi:https://doi.org/10.3390/suschem2010011
Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., & Sun, Z., 2018. A mini-review on metal recycling from spent lithium ion batteries. Engineering, 4(3), pp. 361-370. doi:https://doi.org/10.1016/j.eng.2018.05.018
Zhou, Y., Wang, X., Zhu, C., Dionysiou, D. D., Zhao, G., Fang, G., & Zhou, D., 2018. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation. Water Res, Volume 142, pp. 208-216. doi:https://doi.org/10.1016/j.watres.2018.06.002

QR CODE