研究生: |
吳冠賢 Guan-Xian Wu |
---|---|
論文名稱: |
可調控發光波長之石墨烯量子點合成及其銀離子與胺基酸感測應用 Synthesis of Tunable-emission Graphene Quantum Dots as Photoluminescence-probe for Silver Ion and Biothiol Detection |
指導教授: |
江偉宏
Wei-Hung Chiang |
口試委員: |
邱昱誠
Yu-Cheng Chiu 賴育英 Yu-Ying Lai |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 石墨烯量子點 、大氣常壓微電漿 、光致發光特性 、銀離子感測 、硫醇胺基酸感測 |
外文關鍵詞: | Graphene quantum dots, Atmospheric-pressure microplasma, Photoluminescence, Silver ion sensing, Biothiols sensing |
相關次數: | 點閱:585 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Yang, J.-S., D.A. Martinez, and W.-H. Chiang, Synthesis, characterization and applications of graphene quantum dots, Recent Trends in Nanomaterials. 2017. p. 65-120.
2. Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 2006. 114(2): p. 165-172.
3. Su, Y., et al., The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials, 2009. 30(1): p. 19-25.
4. Hai, X., et al., Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B: Chemical, 2018. 268: p. 61-69.
5. Dong, Y., et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012. 50(12): p. 4738-4743.
6. Zhang, Z., et al., Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 2012. 5(10): p. 8869-8890.
7. Qu, D., et al., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014. 4(1): p. 1-11.
8. Ding, H., et al., Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016. 10(1): p. 484-491.
9. Zheng, X.T., et al., Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015. 11(14): p. 1620-1636.
10. Chu, M., The world scientific encyclopedia of nanomedicine and bioengineering II. The World Scientific Encyclopedia of Nanomedicine and Bioengineering II. 2017.
11. Li, M., et al., Review of carbon and graphene quantum dots for sensing. ACS Sensors, 2019. 4(7): p. 1732-1748.
12. Sun, H., et al., Recent advances in graphene quantum dots for sensing. Materials Today, 2013. 16(11): p. 433-442.
13. Li, L.L., et al., A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979.
14. Pan, D., et al., Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced Materials, 2010. 22(6): p. 734-738.
15. Shen, J., et al., Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 2011. 47(9): p. 2580-2582.
16. Wang, L., et al., Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon, 2015. 94: p. 472-478.
17. Dong, Y., et al., Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon, 2013. 56: p. 12-17.
18. Zhao, Q.-L., et al., Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008(41): p. 5116-5118.
19. Zheng, L., et al., Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. Journal of the American Chemical Society, 2009. 131(13): p. 4564-4565.
20. Bao, L., et al., Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Advanced Materials, 2011. 23(48): p. 5801-5806.
21. Zhu, S., et al., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications. Advanced Functional Materials, 2012. 22(22): p. 4732-4740.
22. Krysmann, M.J., et al., Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. Journal of the American Chemical Society, 2012. 134(2): p. 747-750.
23. Yan, X., X. Cui, and L.-s. Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size. Journal of the American Chemical Society, 2010. 132(17): p. 5944-5945.
24. Yan, X., et al., Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letters, 2010. 10(5): p. 1869-1873.
25. Li, S., et al., One-step spontaneous synthesis of fluorescent carbon nanoparticles with thermosensitivity from polyethylene glycol. New Journal of Chemistry, 2015. 39(9): p. 7033-7039.
26. Canevari, T.C., et al., High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochimica Acta, 2016. 209: p. 464-470.
27. Zhu, H., et al., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, 2009(34): p. 5118-5120.
28. Wu, Z.L., et al., A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale, 2014. 6(7): p. 3868-3874.
29. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. 55-70.
30. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
31. Shi, J. and M. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Physical Review Letters, 2006. 96(10): p. 105009.
32. Foest, R., M. Schmidt, and K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry, 2006. 248(3): p. 87-102.
33. Yang, J.-S., D.Z. Pai, and W.-H. Chiang, Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions. Carbon, 2019. 153: p. 315-319.
34. Chiang, W.-H., C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011.
35. Chiang, W.H., et al., Microplasmas for advanced materials and devices. Advanced Materials, 2020: p. 1905508.
36. Wang, Z., et al., Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015. 7(48): p. 20743-20748.
37. Huang, X., et al., Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Processes and Polymers, 2015. 12(1): p. 59-65.
38. Reed, M., et al., Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Physical Review Letters, 1988. 60(6): p. 535.
39. Cayuela, A., et al., Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications, 2016. 52(7): p. 1311-1326.
40. Shen, J., et al., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012. 48(31): p. 3686-3699.
41. Ye, R., et al., Bandgap engineering of coal-derived graphene quantum dots. ACS Applied Materials & Interfaces, 2015. 7(12): p. 7041-7048.
42. Sun, H., et al., A sensitive and validated method for determination of melamine residue in liquid milk by reversed phase high-performance liquid chromatography with solid-phase extraction. Food Control, 2010. 21(5): p. 686-691.
43. Wang, P.-C., et al., Determination of cyromazine and melamine in chicken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2012. 752: p. 78-86.
44. Pan, X.-D., et al., Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC–MS. Food Control, 2013. 30(2): p. 545-548.
45. Gill, R., M. Zayats, and I. Willner, Semiconductor quantum dots for bioanalysis. Angewandte Chemie, 2008. 47(40): p. 7602-7625.
46. Wang, D., et al., Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012. 50(6): p. 2147-2154.
47. Sun, H., et al., Highly photoluminescent amino‐functionalized graphene quantum dots used for sensing copper ions. Chemistry–A European Journal, 2013. 19(40): p. 13362-13368.
48. Huang, H., et al., The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): A platform for metal ion sensing. Talanta, 2013. 117: p. 152-157.
49. Zu, F., et al., The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta, 2017. 184(7): p. 1899-1914.
50. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1-2): p. 55-75.
51. Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie, 2006. 45(28): p. 4562-4589.
52. Lakowicz, J.R., Principles of fluorescence spectroscopy. 2013: Springer Science & Business Media.
53. Griffin, B.A., S.R. Adams, and R.Y. Tsien, Specific covalent labeling of recombinant protein molecules inside live cells. Science, 1998. 281(5374): p. 269-272.
54. Adams, S.R., et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. Journal of the American Chemical Society, 2002. 124(21): p. 6063-6076.
55. Yun, C., et al., Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. Journal of the American Chemical Society, 2005. 127(9): p. 3115-3119.
56. Freeman, R. and I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012. 41(10): p. 4067-4085.
57. Clapp, A.R., et al., Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society, 2004. 126(1): p. 301-310.
58. Medintz, I.L., et al., Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. Journal of the American Chemical Society, 2004. 126(1): p. 30-31.
59. Rao, K.V., et al., Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres. Nucleic Acids Research, 2003. 31(11): p. 66.
60. Maali, A., T. Cardinal, and M. Treguer-Delapierre, Intrinsic fluorescence from individual silver nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 2003. 17: p. 559-560.
61. Petty, J.T., et al., DNA-templated Ag nanocluster formation. Journal of the American Chemical Society, 2004. 126(16): p. 5207-5212.
62. Ratte, H.T., Bioaccumulation and toxicity of silver compounds: a review. Environmental Toxicology and Chemistry: An International Journal, 1999. 18(1): p. 89-108.
63. Xiu, Z.-m., et al., Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 2012. 12(8): p. 4271-4275.
64. Yin, Y., et al., Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environmental Science & Technology, 2014. 48(16): p. 9366-9373.
65. Wijnhoven, S.W., et al., Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009. 3(2): p. 109-138.
66. Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996.
67. Barriada, J.L., et al., Dissolved silver measurements in seawater. TrAC Trends in Analytical Chemistry, 2007. 26(8): p. 809-817.
68. Chamsaz, M., M.H. Arbab-Zavar, and J. Akhondzadeh, Triple-phase single-drop microextraction of silver and its determination using graphite-furnace atomic-absorption spectrometry. Analytical Sciences, 2008. 24(6): p. 799-801.
69. Mikelova, R., et al., Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry, 2007. 70(2): p. 508-518.
70. Ran, X., et al., Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chemical Communications, 2013. 49(11): p. 1079-1081.
71. Chen, H., et al., based sensor for visual detection of Ag+ based on a “turn-off-on” fluorescent design. Microchemical Journal, 2020: p. 104887.
72. Li, T., et al., Regulating the properties of carbon dots via a solvent-involved molecule fusion strategy for improved sensing selectivity. Analytica Chimica Acta, 2019. 1088: p. 107-115.
73. Dang, D.K., et al., One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors and Actuators B: Chemical, 2018. 255: p. 3284-3291.
74. Zhao, X.-E., et al., A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensors and Actuators B: Chemical, 2017. 253: p. 239-246.
75. Bian, S., et al., Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors and Actuators B: Chemical, 2017. 242: p. 231-237.
76. Gao, X., et al., One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. Journal of Materials Chemistry C, 2015. 3(10): p. 2302-2309.
77. Janaky, R., et al., Mechanisms of L-cysteine neurotoxicity. Neurochemical Research, 2000. 25(9-10): p. 1397-1405.
78. Heafield, M.T., et al., Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neuroscience Letters, 1990. 110(1-2): p. 216-220.
79. Shahrokhian, S., Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry, 2001. 73(24): p. 5972-5978.
80. Seshadri, S., et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New England Journal of Medicine, 2002. 346(7): p. 476-483.
81. Jacobsen, D.W., et al., Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clinical Chemistry, 1994. 40(6): p. 873-881.
82. Huang, Z., et al., Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chemical Communications, 2011. 47(12): p. 3487-3489.
83. Amjadi, M., Z. Abolghasemi-Fakhri, and T. Hallaj, Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. Journal of Photochemistry and Photobiology A: Chemistry, 2015. 309: p. 8-14.
84. Kumar, A.S.K., et al., L-cystine-linked BODIPY-adsorbed monolayer MoS2 quantum dots for ratiometric fluorescent sensing of biothiols based on the inner filter effect. Analytica Chimica Acta, 2020.
85. Zhou, L., et al., Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chemical Communications, 2012. 48(8): p. 1147-1149.
86. Pu, F., et al., DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Analytical Chemistry, 2010. 82(19): p. 8211-8216.
87. Brouwer, A.M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 2011. 83(12): p. 2213-2228.
88. Demasa, J. and G. Crosby, The measurement of photoluminescence quantum yields. The Journal of Chemical Physics, 1968. 48: p. 4726.
89. Paramelle, D., et al., A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 2014. 139(19): p. 4855-4861.
90. Zhou, R., et al., Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018. 20(23): p. 5276-5284.
91. Yeh, T.-F., et al., Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. The Journal of Physical Chemistry Letters, 2016. 7(11): p. 2087-2092.
92. Zhang, M., et al., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012. 22(15): p. 7461-7467.
93. Yang, P., et al., Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon, 2019. 146: p. 636-649.
94. Hu, S., et al., Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angewandte Chemie, 2015. 54(10): p. 2970-2974.
95. Sun, Y., et al., Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013. 15(24): p. 9907.
96. Wang, L., et al., Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications, 2014. 5(1): p. 1-9.
97. Szarek, W.A., et al., A Raman and infrared study of crystalline D-fructose, L-sorbose, and related carbohydrates. Hydrogen bonding and sweetness. Canadian Journal of Chemistry, 1984. 62(8): p. 1512-1518.
98. Söderholm, S., et al., Raman spectra of fructose and glucose in the amorphous and crystalline states. Journal of Raman Spectroscopy, 1999. 30(11): p. 1009-1018.
99. Peng, J., et al., Graphene quantum dots derived from carbon fibers. Nano Letters, 2012. 12(2): p. 844-849.
100. Rajender, G. and P. Giri, Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. Journal of Materials Chemistry C, 2016. 4(46): p. 10852-10865.
101. Kiguchi, M., Compendium of Surface and Interface Analysis. 2018: Springer.
102. Serra, A., et al., Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology, 2009. 20(16): p. 165501.
103. Shin, Y., et al., Mass production of graphene quantum dots by one‐pot synthesis directly from graphite in high yield. Small, 2014. 10(5): p. 866-870.
104. Tang, L., et al., Size‐dependent structural and optical characteristics of glucose‐derived graphene quantum dots. Particle & Particle Systems Characterization, 2013. 30(6): p. 523-531.
105. Chen, S., et al., In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Analytical Chemistry, 2014. 86(13): p. 6689-94.
106. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chemical Reviews, 2009. 109(11): p. 5868-5923.
107. Zhao, Y., et al., Fluorescence temperature sensor based on GQDs solution encapsulated in hollow core fiber. IEEE Photonics Technology Letters, 2017. 29(18): p. 1544-1547.
108. Jin, J., et al., Precisely controllable core-shell Ag@Carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions. ACS Applied Materials & Interfaces, 2016. 8(41): p. 27956-27965.
109. Wood, A., M. Giersig, and P. Mulvaney, Fermi level equilibration in quantum dot− metal nanojunctions. The Journal of Physical Chemistry B, 2001. 105(37): p. 8810-8815.