簡易檢索 / 詳目顯示

研究生: 鄧莉亞
Li-Ya Teng
論文名稱: 鋼筋混凝土低矮剪力牆介面剪力行為_跨深比0.5
Interface Shear Behavior of Reinforced Concrete Squat Wall in Aspect Ratio 0.5
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
廖文正
Wen-Cheng Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: 鋼板圍束鋼筋混凝土低矮剪力牆剪力強度
外文關鍵詞: confining steel plate, reinforced concrete, squat wall, shear strength
相關次數: 點閱:306下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究根據過去試驗結果(Cheng 等學者,2021),以已測試之試體CCC_0.5H為基礎,規劃並測試另外三組剪力牆跨深比皆為0.5(hw/lw=0.5),在相似的剪應力需求(Vmpr),即試體於牆底發展可能彎矩強度 所對應的正規剪應力值約為10√fc'(psi)(0.83√fc'(Mpa)),設計不同特殊邊界構材、插接筋量及圍束鋼板之剪力牆試體,目的欲探討低矮剪力牆於往復載重行為之影響。
根據實驗結果所得之結論顯示,不使用插接筋能提升牆體的變形能力;與傳統鋼筋混凝土牆相比,特殊邊界構材對於介面滑移主控破壞之牆體的強度與變形能力影響有限;圍束鋼板能使牆體增加極限剪力強度及極限變形能力。
此外,觀察試體剪力滑移破壞結果,提出一個想法來計算剪力滑移強度,並搜集過去10座滑移破壞的低矮剪力牆,就本資料庫而言,新計算方式比現行規範ACI318-19有更好的評估結果。


According to specimen CCC_0.5H (Cheng, et al.,2021) was test in the past. An experimental program consisting of three specimens were conducted to evaluate effects of different arrangements on cyclic responses of reinforced concrete (RC) squat wall with a shear aspect ratio,hw/lw, of 0.5. All test specimens are designed to have similar shear sress demand associated with the development of probable flexural strength approaching 10√fc'(psi) (0.83√fc'(Mpa)).
Test results show that specimen without dowel reinforcement can increased the deformation capacity. The influence of special boundary elements on the strength and deformation capacity of the walls controlled by interface sliding is limited. The confinement of steel plates can increase both of the shear strength and ultimate deformation capacity of the wall.
Furthermore, by observing the shear sliding failure of the specimens, an idea is proposed to calculate the shear sliding strength. By collecting data from ten sqaut shear walls that experienced sliding failure, the newly proposed calculation method provides a better assessment result compared to the current ACI 318-19 code, at least for this database.

摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的及方法 3 1.4 研究內容架構 4 第二章 文獻回顧 5 2.1 簡介 5 2.2 低矮剪力牆的破壞行為 5 2.3 ACI318-19剪力強度預測模型 6 2.4 簡化軟化拉壓桿模型 (Hwang等學者,2001;Hwang與Lee,2002;Hwang等學者,2017) 7 2.5 剪力滑移強度模型 10 2.5.1 Birkeland 等學者 (1966) 10 2.5.2 Loov (1978) 11 2.5.3 Walraven, Frenay and Pruijssers (1987) 12 2.5.4 Mattock (2001) 12 2.5.5 Eurocode 2 (2004) 13 2.5.6 fib Model Code (2010) 13 2.5.7 CSA (A23.3-14) (2015) 14 2.5.8 AASHTO (2020) 14 2.6 過去實驗結果摘要 16 2.6.1 Beak等學者 (2018) 16 2.6.2 Cheng 等學者 (2021) 17 第三章 測試規劃 19 3.1 試體設計概述 19 3.2 試體尺寸與配筋 20 3.2.1 剪力牆主試體 20 3.2.2 頂部混凝土塊 25 3.2.3 底部混凝土塊 26 3.3 試體製作 27 3.4 試驗配置 30 3.5 試體測試程序 33 3.6 試驗量測裝置 34 3.6.1 外部量測 34 3.6.2 應變計 36 3.6.3 裂縫寬度量測 39 第四章 測試結果與討論 40 4.1 材料測試結果 40 4.1.1 混凝土 40 4.1.2 鋼筋拉伸試驗 43 4.1.3 鋼材拉伸試驗 47 4.2 試體測試歷程 49 4.2.1 試體RC_0.5 49 4.2.2 試體RC_0.5B 57 4.2.3 試體SC_0.5 64 4.3 測試摘要及討論 68 4.3.1 剪力強度 70 4.3.2 剪力滑移強度模型 70 4.3.3 變形能力 76 4.3.3.1 極限變形能力 76 4.3.3.2 變形分量 77 4.3.4 應變計 81 4.3.4.1 試體RC_0.5 82 4.3.4.2 試體RC_0.5B 83 4.3.4.3 試體SC_0.5 84 第五章 結論 85 參考資料 86 附錄A 應變計圖 90  

AASHTO (American Association of State Highway and Transportation Officials), 2020, “AASHTO LRFD Bridge Design Specifications,” 9th ed., SI units. Washington, DC: AASHTO.
ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-19),” American Concrete Institute, Farmington Hills, Michigan, 623 pp.
ASTM E8/E8M, 2021, “Standard Test Methods for Tension Testing of Metallic Materials,” American Standard Test Method, West Conshohovken, 30pp.
Barda, F.; Hanson; J. M.; and Corley, W. G., 1977, “Shear Strength of Low-Rise Walls with Boundary Elements,” ACI Special Publications, SP-53, Reinforced Concrete in Seismic Zones, pp.149-202.
Baek, J.–W., Park, H.–G., Lee, J.–H., and Shin, H.–M., 2018, “Shear-Friction Strength of Low-Rise Walls with 550 MPa (80 ksi) Reinforcing Bars under Cyclic Loading,” ACI Structural Journal, V. 115, No.1, Jan., pp. 65-77.
Baek, J.–W., Kim S. –H., Park, H.–G., and Lee, B.–S., 2020, “Shear-Friction Strength of Low-Rise Walls with 600 Mpa Reinforcing Bars,” ACI Structural Journal, V. 117, No.1, Jan, pp.169-182
Birkeland, P. W.; Birkeland, H. W.; 1966, “Connections in Precast Concrete Construction,” Journal of the American Concrete Institute, No.63-15, pp.345–368.
British Standards Institution, 2004, “Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Building (EN-1992-1-1:2004:E),” European Committee for Standardization, Brussels, Belgium, 225 pp.
Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V. 113, No.5, Sep.-Oct., pp. 1065-1076.
Cheng, M.–Y.; Chou, Y.; Wibowo, L. S. B.; 2020, “Cyclic Response of Reinforced Concrete Squat Walls to Boundary Element Arrangement.”, ACI Structural Journal, V. 117, No. 4, pp. 15-24.
Cheng, M.–Y.; Wibowo, L. S. B.; Giduquio, M. B.; and Lequesne, R. D.,2021, “Strength and Deformation of Reinforced Concrete Squat Walls with High-Strength Materials.”, ACI Structural Journal, V. 118, No. 1, pp. 125-137.
CSA (Canadian Standards Association). 2014. “Design of Concrete Structures. A23.3-04,”. Toronto, ON, Canada: CSA.
Fédération internationale du béton (fib): Model Code 2010, final draft. fib Bulletin Nos. 65/66, Lausanne, 2012.
Fintel, M., 1991, “Shearwalls – An Answer for Seismic Resistance?” Concrete International, V. 13, No. 7, Jul., pp. 48–53.
Gulec, C. K., and Whittaker, A. S., 2011, “Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls,” ACI Structural Journal, V. 108, No. 1, Jan.-Feb., pp. 80-89.
Hwang, S. J.; Fang, W. H.; Lee, H. J.; and Yu, H. W., 2001, “Analytical Model for Predicting Shear Strength of Squat Walls,” Journal of Structural Engineering, V. 127, No. 1, Jan, pp. 43-50.
Hwang, S. J.; and Lee, H. J., 2002, “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, Dec., pp. 1519-1526.
Hwang, S. J.; Tsai, R. J.; Lam W. –K.; and Moehle, J. P., 2017, “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, V. 114, No. 5, Sep.- Oct., pp. 1239-1248.
Kassem, W., 2015, “Shear Strength of Squat Walls: A Strut and Tie Model and Closed Form Design Formula,” Engineering Structures, V. 84, Feb., pp. 430-438.
Loov, R. E.; 1978, “Design of precast connections,” Paper presented at a seminar organized by Compa International Pt., Ltd. Singapore.
Mattock, A. H., 2001, “Shear Friction and High-Strength Concrete,” ACI Structural Journal; V. 98, No. 1, pp:50–59.
Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011, “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” National Institute of Standards and Technology, pp. 37.
Paulay, T.; Priestley, M. J. N.; and Synge, A. J., 1982, “Ductility in Earthquake Resisting Squat Shearwalls,” ACI Journal Proceedings, V. 79, No. 4, Jul.-Aug., pp. 257-269.
Pilette, F. C., 1987, “Behavior of Earthquake Resistant Squat Shear Walls,” MS thesis, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 177 pp.
Sanches-Alejander, A., and Alcocer, S. M., 2010, “Shear strength of Squat Reinforced Concrete Walls Subjected to Earthquake Loading – Trends and Models,” Engineering Structures, Vol. 32, May, pp. 2466-2476.
Terzioglu, T., Orakcal, K., Massone, L., M., 2018. “Cyclic lateral load behavior of squat reinforced concrete walls,” Engineering Structures, V. 160, pp. 147-160.
Walraven, J.; Frénay, J.; Pruijssers, A., 1987, “Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members,” PCI Journal, 32(1):66–84.
Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls,” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.
Wood, S. L., 1991, “Performance of Reinforced Concrete Buildings During the 1985 Chile Earthquake: Implications for the Design of Structural Walls.”, V. 7, No. 4, pp. 607-638.
Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation, Department of Civil and Construction Engineering, University of Science and Technology, Taipei, Taiwan. 

QR CODE