簡易檢索 / 詳目顯示

研究生: 李聖儒
Sheng-Ru Lee
論文名稱: 氧化石墨烯與樹枝狀高分子複合物之特性分析
Characteristics of Hybrids of Graphene Oxide and Dendrimer
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 江偉宏
Wei-Hung Chiang
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 氧化石墨烯樹枝狀高分子藥物承載
外文關鍵詞: Graphene oxide, dendrimer, drug loaded
相關次數: 點閱:296下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近來有奈米複合材料是非常廣泛且實用的研究題材,本實驗我們選用氧化石墨烯當主要應用材料,其表面富含氧化合物能與各種材料做結合,而氧化石墨烯在水中良好的分散性能避免氧化石墨烯聚集成大顆粒。而我們有興趣的是將氧化石墨烯當作載體去結合樹枝狀高分子聚合物,比較物理吸附與化學吸附的差異性。同時改變水溶液酸鹼值來分析其結合效果。結果顯示化學鍵結是比較有利於樹枝狀高分子吸附在氧化石墨烯上,同時改變酸鹼條件去影響吸附情形時,結果顯示在中性條件下結合程度最好,而酸或鹼的條件下則會降低樹枝狀高分子聚合物吸附的數量。此外我們更進一步想要了解單位氧化石墨烯最多能乘載多少樹枝狀高分子聚合物,其最大的吸附比重約是氧化石墨烯比樹枝狀高分子聚合物約為1 : 1.5,氧化石墨烯與樹枝狀高分子聚合物吸附體積比約是為1 : 2,氧化石墨烯的表面被樹枝狀高分子聚合物覆蓋率約為100%。藉由此結論往後我們將能藉此調配出最佳的比例。
修飾氧化石墨烯表面亦是一個相當重要的研究方向,本實驗將GO藉由超波音震盪方式製成奈米氧化石墨烯,其奈米氧化石墨烯片狀約為100奈米。我們選擇用-OH官能基的樹枝狀高分子聚合物與奈米氧化石墨烯作化學鍵結,結果顯示在樹狀高分子聚合物結合與氧化石墨烯結合後也能均勻地分散在水溶液中。氧化石墨烯由於其表面涵蓋豐富氧化合物,使得表面的界面電位呈現負值,我們藉由界面電位分析觀察加入樹狀高分子聚合物後其界面電位的改變。本文策略是奈米氧化石墨烯作為生物應用在藥物傳遞系統上。奈米氧化石墨烯加入草酸來當作癌細胞識別結合的官能基,以及搭載我們的抗癌藥物阿徽素,因為它的芳香族結構能高效率地搭載到奈米氧化石墨烯上面。最後結果顯示羥基之樹枝狀高分子有效地改善氧化石墨烯與草酸及阿徽素複合體的分散性。這顯示作為藥物傳遞系統奈米氧化石墨烯與羥基之樹枝狀高分子搭載草酸及阿徽素是可以被應用的。


In recent years, nano-composites become extensive and functional research objects. In this study, graphene oxide (GO) is focused as a main targeting material. Its surface has rich oxygen-based functional groups and can interact with variety of chemicals. Moreover, GO can be dispersed in water and avoid to self-aggregate into large particles. Due to these merits, GO can be a good candidate to hybridize with other materials in aqueous solution. The NH2-terminated Poly(amido amine) (PAMAM) dendrimer is preferably used to combine with surface functional groups of GO, to be a nano-composite, and then the hybrids of adsorption and chemical binding between GO and dendrimer are compared. Simultaneously, the immobilization effect depending on the solution pH is analyzed. The results show that the chemical binding procedure is preferable to immobilize dendrimer on GO in comparison with the adsorption procedure. Moreover, the immobilization is the best in the neutral condition and less at acidic or alkaline conditions. In addition, it is even likeable to know what the maximum quantity of PAMAM dendrimer can be immobilized on unit GO. The weight ratio of GO : dendrimer at saturated binding is about 1 to 1.5. In other definition, the optimum volume ratio of GO : PAMAM dendrimer is about 1 to 2, and then the total (about 100 %) surface of graphene oxide is covered by PAMAM dendrimer.
Surface modification of GO is also a very important research direction. In this study, nano-graphene oxide (NGO), i.e., a graphene oxide sheet of 100 nanometers in lateral width, has been prepared by ultra-sonication. Then NGO is more dispersed than GO in water. The OH-terminated PAMAM dendrimer was chemically immobilized with NGO and the results show that the hybrids of NGO and dendrimer can uniformly disperse in water. Herein, the strategy is biological applications of NGO as drug delivery system. NGO was conjugated with folic acid (FA) molecules for targeting specific cell with folate receptors. Furthermore, doxorubicin (DOX) was selected as an anticancer drug in this study, because its aromatic moiety can be loaded onto NGO with high efficiency. Finally, the results show that the OH-terminated dendrimer efficiently improves the dispersion of NGO-dendrimer/FA/DOX hybrid in water unlike the hybrids without dendrimer. This indicates the possible application of the NGO-dendrimer/FA/DOX hybrid to drug delivery systems.

摘要I AbstractIII Table of contentsV List of Figures and TablesVII Chapter 1 Introduction1 1-1 Graphene oxide (GO)1 1-2 Poly(amido amine) (PAMAM) dendrimers (denNH2, denOH)3 1-3 Drug delivery5 Chapter 2 Research Methodology6 2-1 Research design6 2-2 Materials6 2-3 Experimental Procedures8 2-3-1 Synthesis of denNH2 encapsulating platinum nanoparticles (PtNPs)8 2-3-2 Adsorption preparation and chemical synthesis of hybrids of GO with denNH28 2-3-3 Preparation of nano-graphene oxide (NGO)9 2-3-4 Chemical synthesis of hybrids of NGO-denOH and FA9 2-3-5 Chemical synthesis of hybrids of NGO-denOH and FA10 2-3-6 Adsorption preparation of hybrids of NGO-denOH/FA and DOX11 2-4 Instruments12 Chapter 3 Results and Discussion13 3-1 Characteristics of hybrids of GO with denNH213 3-1-1 Characteristics of hybrids of GO with denNH2 by infrared spectrometry13 3-1-2 Characteristics of hybrids of GO with denNH2 by microscopy19 3-1-3 Characteristics of hybrids of GO with denNH2 by zeta potential24 3-1-4 Immobilization of denNH2 on GO surface31 Conclusion44 3-2 Characteristics of hybrids of NGO with denNH2 and denOH, folic acid and doxorubicin45 3-2-1 Comparison of NGO and GO45 3-2-2 Comparison of NGO-denPtNPs and GO-denPtNPs hybrids49 3-2-3 Comparison of NGO-denOH and NGO-denNH253 3-2-4 Characteristics of hybrids of NGO-denOH and folic acid57 3-2-5 Loading of doxorubicin on NGO-denOH/folic acid60 3-2-6 Conclusion65 Chapter 4 General Conclusion66 Reference67

[1] Sun, X., et al. (2008). "Nano-Graphene Oxide for Cellular Imaging and Drug Delivery." Nano Res 1(3): 203-212.
[2] Pumera, M. (2010). "Graphene-based nanomaterials and their electrochemistry." Chem Soc Rev 39(11): 4146-4157.
[3] Alexander A, Suchismita G., Wenzhong B., Irene C., Desalegne T., Feng M. and Chun Ning L., (2008) “Superior thermal conductivity of single-layer graphene”, NANO LATTERS 8(3): 902-907.
[4] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45(7), 1558–1565.
[5] Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3(2), 101–105.
[6] A. K. Geim and K. S. Novoselov, Nat. Mater., (2007) “THE RISE OF GRAPHENE”, 6, 183.
[7] Hummers W, Offeman R. “Preparation of graphitic oxide”. J Am Chem Soc 1958;80:1339
[8] Kinga H., Jan M., Phillip O., Lukas M. E., Christoph Z., Barbara A. and Evelin J. (2001) “The route to functional graphene oxide”, cphc.200
[9] Wei G., Lawrence B. Alemany, Lijie Ci. and Pulickel M. Ajayan (2009) “New insights into the structure and reduction of graphite oxide” DOI: 10.1038/NCHEM.281
[10] R. Muszynski, B. Seger and P. V. Kamat, J. Phys. Chem. C, 2008, 112, 5263–5266.
[11] Y. Fang, S. Guo, C. Zhu, Y. Zhai and E. Wang, Langmuir, 2010, 26, 11277–11282.
[12] W. J. Hong, H. Bai, Y. X. Xu, Z. Y. Yao, Z. Z. Gu and G. Q. Shi, J. Phys. Chem. C, 2010, 114, 1822–1826.
[13] Y. Wang, S. Zhang, D. Du, Y. Shao, Z. Li, J. Wang, M. H. Engelhard, J. Li and Y. Lin, J. Mater. Chem., 2011, 21, 5319–5325.
[14] Y. S. Hu, L. Kienle, Y. G. Guo and J. Maier, Adv. Mater., 2006, 18, 1421–1426.
[15] D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay and J. Liu, ACS Nano, 2009, 3, 907–914.
[16] X. Y. Zhang, H. P. Li, X. L. Cui and Y. H. Lin, J. Mater. Chem., 2010, 20, 2801–2806.
[17] K. K. Manga, S. Wang, M. Jaiswal, Q. L. Bao and K. P. Loh, Adv. Mater., 2010, 22, 5265–5270.
[18] Wang, G., et al. (2009). "Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method." Carbon 47(1): 68-72.
[19] Song, M., et al. (2012). "The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets." Journal of Nanotechnology 2012: 1-5.
[20] Choi, Y., et al. (2011). "Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes." Journal of Materials Chemistry 21(39): 15431.
[21] Lu, G., et al. (2009). "Facile, noncovalent decoration of graphene oxide sheets with nanocrystals." Nano Res 2(3): 192-200.
[22] W. Graeme, S. Brian, and Kamat P. V. (2008) “TiO2-Graphene Nanocomposites.
UV-Assisted Photocatalytic Reduction of Graphene Oxide” VOL.2 NO.7 :1487–1491
[23] D. A. Tomalia, Prog. Polym. Sci., 2005, 30, 294.
[24] R.W. et al. J. Phys. Chem. B. 2005, 109, 692.
[25] Carlmark, A., et al. (2009). "New methodologies in the construction of dendritic materials." Chem Soc Rev 38(2): 352-362.
[26] Tomalia DA, Naylor AM, Goddard WA III: Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem ht Ed Engll990, 29:138-l 75.
[27] DA Tomalia - US Patent, 1988 ,4,737,550,
[28] Y.K. Jing, L. Wang, L.J. Xia, G.G. Chen, Z. Chen, W.H. Miller, S. Waxman, Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo, Blood 97 (2001) 264–269.
[29] G.Q. Chen, X.G. Shi, W. Tang, S.M. Xiong, J. Zhu, X. Cai, Z.G. Han, J.H. Ni, G.Y. Shi, P.M. Jia, M.M. Liu, K.L. He, C. Niu, J. Ma, P. Zhang, T.D. Zhang, P. Paul, T. Naoe, K. Kitamura, W. Miller, S. Waxman, Z.Y. Wang, H. The, S.J. Chen, Z. Chen, Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells, Blood 89 (1997) 3345–3353.
[30] D.N. Carney, J.B. Mitchell, T.J. Kinsella, In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants, Cancer Res. 43 (1983) 2806–2811.
[31] H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, New antibiotics, bleomycin A and B, J. Antibiot. 19 (1966) 200–209.
[32] V. Kouranos, G. Dimopoulos, A. Vassias, K.N. Syrigos, Chemotherapy-induced neutropenia in lung cancer patients: the role of antibiotic prophylaxis, Cancer Lett. 313 (2011) 9–14.
[33] A.H. Calvert, D.R. Newell, L.A. Gumbrell, S. O’Reilly, M. Burnell, F.E. Boxall, Z.H. Siddik, I.R. Judson, M.E. Gore, E. Wiltshaw, Carboplatin dosage: prospective evaluation of a simple formula based on renal function, J. Clin. Oncol. 7 (1989) 1748–1756.
[34] P.E. Kintzel, R.T. Dorr, Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function, Cancer Treat. Rev. 21 (1995) 33–64.
[35] S. Jaracz, J. Chen, L.V. Kuznetsova, I. Ojima, Recent advances in tumor-targeting anticancer drug conjugates, Bioorg. Med. Chem. 13 (2005) 5043–5054.
[36] A.S. Narang, S. Varia, Role of tumor vascular architecture in drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 640–658.
[37] B.D. Chithrani, J. Stewart, C. Allen, D.A. Jaffray, Intracellular uptake, transport, and processing of nanostructures in cancer cells, Nanomed. Nanotechnol. Biol. Med. 5 (2009) 118–127.
[38] S. Geiger, V. Lange, P. Suhl, V. Heinemann, H.J. Stemmler, Anticancer therapy induced cardiotoxicity: review of the literature, Anti-Cancer Drug 21 (2010).
[39] J. Voortman, G. Giaccone, Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report, BMC Cancer 6 (2006) 129.
[40] R. Abou-Jawde, T. Choueiri, C. Alemany, T. Mekhail, An overview of targeted treatments in cancer, Clin. Ther. 25 (2003) 2121–2137.
[41] M. Saad, O.B. Garbuzenko, T. Minko, Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer, Nanomedicine 3 (2008) 761–776.
[42] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B 102 (1998) 4477–4482.
[43] W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, R.S. Ruoffm, Synthesis and solidstate NMR structural characterization of 13C-labeled graphite oxide, Science 321 (2008) 1815–1817.
[44] K. Yang, J.M. Wan, S. Zhang, B. Tian, Y.J. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power, Biomaterials 33 (2012) 2206–2214.
[45] L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs, Small 6 (2010) 537–544.
[46] J.L. Li, H.C. Bao, X.L. Hou, L. Sun, X.G. Wang, M. Gu, Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy, Angew. Chem. Int. Ed. Engl. 51 (2012) 1830–1834.
[47] Y. Yang, Y.M. Zhang, Y. Chen, D. Zhao, J.T. Chen, Y. Liu, Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery, Chem. Eur. J. 18 (2012) 4208–4215.
[48] A.J. Shen, D.L. Li, X.J. Cai, C.Y. Dong, H.Q. Dong, H.Y. Wen, G.H. Dai, P.J. Wang, Y.Y. Li, Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment, J. Biomed. Mater. Res. 100 (2012) 2499–2506
[49] Konkena, B. and S. Vasudevan (2012). "Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements." The Journal of Physical Chemistry Letters 3(7): 867-872.
[50] Dukhin, S. S.; Derjaguin, B. V. Non-equilibrium Double Layer and Electrokinetic Phenomena. In Surface and Colloid Science; Matijevic, E., Ed.; J. Wiley & Sons: New York, 1974; Vol. 7, pp 297−300.
[51] Tomalia, D. A. (2004). "Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Organic Chemistry." AldrichimicaACTA: VOL.37, NO.32.
[52] Montes-Navajas, P., et al. (2013). "Surface area measurement of graphene oxide in aqueous solutions." Langmuir 29(44): 13443-13448.
[53] Luo, X. and T. Imae (2007). "Photochemical synthesis of crown-shaped platinum nanoparticles using aggregates of G4-NH2 PAMAM dendrimer as templates." Journal of Materials Chemistry 17(6): 567.

QR CODE