簡易檢索 / 詳目顯示

研究生: 李冠霆
Guan-Ting Li
論文名稱: 應用微通道反應器進行輪胎裂解油氧化脫硫程序開發
Study on Desulfurization of Tire Pyrolytic Oil with Using Microchannel Reactor
指導教授: 蔡伸隆
Shen-Long Tsai
曾堯宣
Yao-Hsuan Tseng
口試委員: 蔡伸隆
Shen-Long Tsai
曾堯宣
Yao-Hsuan Tseng
游承修
Cheng-Hsiu Yu
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 微化工技術微反應器氧化脫硫輪胎裂解油
外文關鍵詞: microchemical technology, microreactor, oxidative desulfurization, pyrolysis oil
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 x 1 第一章 緒論 1 1.1 前言 1 1.2 輪胎裂解油 3 1.2.1 背景與用途 3 1.2.2 市場分析 4 1.3 研究動機與目的 6 2 第二章 文獻回顧 8 2.1 裂解油除硫方法 8 2.1.1 加氫脫硫法 8 2.1.2 氧化脫硫法 9 2.1.3 酸鹼洗滌法 10 2.1.4 吸附脫硫法 11 2.1.5 萃取脫硫法 12 2.1.6 生物脫硫法 13 2.1.7 除硫方法之比較 14 2.2 微化工技術與微反應器系統 15 2.2.1 微化工技術之原理與優勢 15 2.2.2 微化工技術應用之限制 16 2.2.3 微化工技術發展現況 17 3 第三章 實驗方法與步驟 19 3.1 實驗藥品 19 3.2 實驗設備與分析儀器 19 3.2.1 實驗設備 19 3.2.2 分析儀器 21 3.3 微通道系統 22 3.3.1 混合器之選用 22 3.3.2 微反應器之選用 24 3.4 實驗設計 26 3.5 實驗步驟 27 3.5.1 微反應器系統操作流程 27 3.5.2 以雙氧水氧化廢輪胎裂解油 29 4 第四章 結果與討論 30 4.1 系統溫度對反應的影響 31 4.2 滯留時間對反應的影響 34 4.3 系統壓力對反應的影響 38 4.4 進料比例對反應的影響 41 4.5 H2O2濃度對反應的影響 43 4.6 油品品質分析 45 4.7 以O2作為氧化劑之實驗 47 4.8 經濟評估 49 4.9 除氮效果分析 51 4.10 芳香烴含量分析 52 5 第五章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 55 5.2.1 脫硫方式改善 55 5.2.2 反應器材質改善及加入觸媒 55 6 參考文獻 56

[1] 董永貴, 微形傳感器[M]. 北京: 清華大學出版社, 2007.
[2] J. Burns and C. Ramshaw, "Development of a microreactor for chemical production," Chemical Engineering Research and Design, vol. 77, no. 3, pp. 206-211, 1999.
[3] G. Zhang et al., "Properties and utilization of waste tire pyrolysis oil: A mini review," Fuel Processing Technology, vol. 211, p. 106582, 2021.
[4] J. D. Martínez, N. Puy, R. Murillo, T. García, M. V. Navarro, and A. M. Mastral, "Waste tyre pyrolysis–A review," Renewable and sustainable energy reviews, vol. 23, pp. 179-213, 2013.
[5] G.-G. Choi, S.-J. Oh, and J.-S. Kim, "Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization," Energy, vol. 141, pp. 2234-2241, 2017.
[6] A. Quek and R. Balasubramanian, "Liquefaction of waste tires by pyrolysis for oil and chemicals—A review," Journal of Analytical and Applied Pyrolysis, vol. 101, pp. 1-16, 2013.
[7] J. D. Martínez, M. Lapuerta, R. García-Contreras, R. Murillo, and T. García, "Fuel properties of tire pyrolysis liquid and its blends with diesel fuel," Energy & Fuels, vol. 27, no. 6, pp. 3296-3305, 2013.
[8] I. Hita, M. Arabiourrutia, M. Olazar, J. Bilbao, J. M. Arandes, and P. Castaño, "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, vol. 56, pp. 745-759, 2016.
[9] P. T. Williams, "Pyrolysis of waste tyres: a review," Waste management, vol. 33, no. 8, pp. 1714-1728, 2013.
[10] J. D. Martínez, Á. Ramos, O. Armas, R. Murillo, and T. García, "Potential for using a tire pyrolysis liquid-diesel fuel blend in a light duty engine under transient operation," Applied energy, vol. 130, pp. 437-446, 2014.
[11] M. M. Research, "Pyrolysis Oil Market: Pyrolysis Oil Has the Potential to Replace Traditional Fossil Fuels That Drive Pyrolysis oil as the Emerging Sector for Fuel and Power Generation," Maximize Market Research, 2022.
[12] 陳南宇, "柴油除硫製程發展," 碩士, 化學工程所, 國立中正大學, 嘉義縣, 2007. [Online]. Available: https://hdl.handle.net/11296/vu64x4
[13] S. S. Bello et al., "A review on the reaction mechanism of hydrodesulfurization and hydrodenitrogenation in heavy oil upgrading," Energy & Fuels, vol. 35, no. 14, pp. 10998-11016, 2021.
[14] X. Weng et al., "Ultradeep hydrodesulfurization of diesel: mechanisms, catalyst design strategies, and challenges," Industrial & Engineering Chemistry Research, vol. 59, no. 49, pp. 21261-21274, 2020.
[15] S. Houda, C. Lancelot, P. Blanchard, L. Poinel, and C. Lamonier, "Oxidative desulfurization of heavy oils with high sulfur content: a review," Catalysts, vol. 8, no. 9, p. 344, 2018.
[16] A. M. Dehkordi, M. A. Sobati, and M. A. Nazem, "Oxidative desulfurization of non-hydrotreated kerosene using hydrogen peroxide and acetic acid," Chinese Journal of Chemical Engineering, vol. 17, no. 5, pp. 869-874, 2009.
[17] T.-B. Lin, H. Huang, J. Hwang, H. Shen, and K. T. Chuang, A Novel Oxidative Desulfurization (Oxyds) Process for Diesel and Vgo. American Institute of Chemical Engineers, 2006.
[18] K. X. Lee and J. A. Valla, "Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review," Reaction Chemistry & Engineering, vol. 4, no. 8, pp. 1357-1386, 2019.
[19] I. Ahmed and S. H. Jhung, "Adsorptive desulfurization and denitrogenation using metal-organic frameworks," Journal of Hazardous materials, vol. 301, pp. 259-276, 2016.
[20] R. Dehghan and M. Anbia, "Zeolites for adsorptive desulfurization from fuels: A review," Fuel Processing Technology, vol. 167, pp. 99-116, 2017.
[21] M. Yu et al., "Removal of organic sulfur compounds from diesel by adsorption on carbon materials," Reviews in Chemical Engineering, vol. 31, no. 1, pp. 27-43, 2015.
[22] A. Rajendran, H. X. Fan, J. Feng, and W. Y. Li, "Desulfurization on Boron Nitride and Boron Nitride‐based Materials," Chemistry–An Asian Journal, vol. 15, no. 14, pp. 2038-2059, 2020.
[23] G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, "Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon," Chemical Engineering Journal, vol. 313, pp. 993-1003, 2017.
[24] T. Adžamić, K. Sertić Bionda, and Z. Zoretić, "Desulfurization of FCC gasoline by extraction with sulfolane and furfural," Nafta, vol. 60, no. 9, pp. 491-494, 2009.
[25] E. Kianpour and S. Azizian, "Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions," Fuel, vol. 137, pp. 36-40, 2014.
[26] B. Saha, S. Sengupta, and R. Selvin, "Comparative studies of extraction ability of organic solvents to extract thiophene from model fuel," Separation Science and Technology, vol. 55, no. 6, pp. 1123-1132, 2020.
[27] S. B. Abdullah, H. A. Aziz, and Z. Man, "Ionic liquids for desulphurization: a review," Recent Advances in Ionic Liquids, 2018.
[28] C. Liu, Q. He, Z. Zhang, Y. Su, R. Xu, and B. Hu, "Efficient Extractive Desulfurization of Fuel Oils Using N‐Pyrrolidone/Alkylphosphate‐Based Ionic Liquids," Chinese Journal of Chemistry, vol. 32, no. 5, pp. 410-416, 2014.
[29] J. J. Ibrahim et al., "Extractive desulfurization of fuel oils with dicyano (nitroso) methanide-based ionic liquids," Separation Science and Technology, vol. 50, no. 8, pp. 1166-1174, 2015.
[30] M. A. Betiha, A. M. Rabie, H. S. Ahmed, A. A. Abdelrahman, and M. F. El-Shahat, "Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review," Egyptian journal of petroleum, vol. 27, no. 4, pp. 715-730, 2018.
[31] K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, "Molecular mechanisms of biocatalytic desulfurization of fossil fuels," Nature biotechnology, vol. 14, pp. 1705-1709, 1996.
[32] M. Luo, J. Xing, Z. Gou, S. Li, H. Liu, and J. Chen, "Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane," Biochemical Engineering Journal, vol. 13, no. 1, pp. 1-6, 2003.
[33] T. Ohshiro and Y. Izumi, "Microbial desulfurization of organic sulfur compounds in petroleum," Bioscience, biotechnology, and biochemistry, vol. 63, no. 1, pp. 1-9, 1999.
[34] V. Hakke, S. Sonawane, S. Anandan, S. Sonawane, and M. Ashokkumar, "Process intensification approach using microreactors for synthesizing nanomaterials—A critical review," Nanomaterials, vol. 11, no. 1, p. 98, 2021.
[35] D. M. Roberge, B. Zimmermann, F. Rainone, M. Gottsponer, M. Eyholzer, and N. Kockmann, "Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway?," Organic Process Research & Development, vol. 12, no. 5, pp. 905-910, 2008.
[36] K. F. Jensen, "Flow chemistry—microreaction technology comes of age," AIChE Journal, vol. 63, no. 3, pp. 858-869, 2017.
[37] D. Dallinger, B. Gutmann, and C. O. Kappe, "The concept of chemical generators: on-site on-demand production of hazardous reagents in continuous flow," Accounts of Chemical Research, vol. 53, no. 7, pp. 1330-1341, 2020.
[38] F. Fanelli, G. Parisi, L. Degennaro, and R. Luisi, "Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis," Beilstein Journal of Organic Chemistry, vol. 13, no. 1, pp. 520-542, 2017.
[39] J. Deng, J. Zhang, K. Wang, and G. Luo, "Microreaction technology for synthetic chemistry," Chinese Journal of Chemistry, vol. 37, no. 2, pp. 161-170, 2019.
[40] Z. Yan, J. Tian, K. Wang, K. D. Nigam, and G. Luo, "Microreaction processes for synthesis and utilization of epoxides: A review," Chemical Engineering Science, vol. 229, p. 116071, 2021.
[41] A. A. Kulkarni, "Continuous flow nitration in miniaturized devices," Beilstein Journal of Organic Chemistry, vol. 10, no. 1, pp. 405-424, 2014.
[42] D. Cantillo and C. O. Kappe, "Halogenation of organic compounds using continuous flow and microreactor technology," Reaction Chemistry & Engineering, vol. 2, no. 1, pp. 7-19, 2017.
[43] 徐. 李汉荣, 微通道反应器连续生产次氯酸钠工艺 (氯碱工业). 2020, pp. 27-29.
[44] 微井科技. "关于微通道的理论基础、应用、行业现状." https://reurl.cc/qLNlqq (accessed.
[45] Sigma-Aldrich. "IR Spectrum Table." https://reurl.cc/N0R7o9 (accessed.
[46] 台灣中油. "燃料油牌價表." https://reurl.cc/RzXZog (accessed.
[47] J. Fang and M. J. Barcelona, "Coupled oxidation of aromatic hydrocarbons by horseradish peroxidase and hydrogen peroxide," Chemosphere, vol. 50, no. 1, pp. 105-109, 2003.
[48] S. Tadepalli, R. Halder, and A. Lawal, "Catalytic hydrogenation of o-nitroanisole in a microreactor: Reactor performance and kinetic studies," Chemical Engineering Science, vol. 62, no. 10, pp. 2663-2678, 2007.

無法下載圖示 全文公開日期 2033/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE