簡易檢索 / 詳目顯示

研究生: Enyew Alemayehu Bayle
Enyew Alemayehu Bayle
論文名稱: CO2響應性藥物傳遞系統,核鹼基功能化超分子載體和羅丹明6G衍生物在強效癌症化療應用中的開發
Development of CO2-responsive Drug Delivery Systems with Nucleobase-Functionalized Supramolecular Carriers and Rhodamine 6G Derivatives for Potent Cancer Chemotherapy Applications
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
張永
Yung Chang
楊昌謀
Chang-Mou Yang
陳仁坤
Jem-Kun Chen
廖愛和
Ai-Ho Liao
鄭志佳
Chih-Chia Cheng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 180
中文關鍵詞: 抗癌治療化療CO2敏感藥物傳遞系統疏水性-親水性轉換高碳酸氣體腫瘤微環境超分子微胞選擇性細胞內吸收罗丹明6G選擇性細胞毒性
外文關鍵詞: Anticancer treatment, Chemotherapy, CO2-responsive, drug delivery system, Hydrophobic-hydrophilic transition, Hypercapnic tumor microenvironment, Supramolecular micelle, Selective cellular internalization, Rhodamine 6G, Selective cytotoxicity
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去幾十年來,科學家們為了對抗對健康構成嚴重威脅的腫瘤,尤其是在開發化療方面,投入了大量努力。儘管如此,傳統化療仍然存在許多問題,如療效有限、藥物釋放不受控以及非特異性和無差別藥物傳遞帶來的多種副作用。為了克服這些障礙,我們可以利用癌症特徵來開發智能生物響應藥物傳遞系統。因此,在第一項研究中,我們設計了一種策略,開發二氧化碳敏感的超分子藥物傳遞系統,以提高癌症治療的效率。
我們設計了一種抗癌劑,由二氧化碳敏感的Imidazole-containing rhodamine 6G (I-R6G) 和功能化帶有尿嘧啶的水溶性聚乙二醇奈米粒子 (U-PEG) 組成。由於U-PEG和I-R6G之間的強親和相互作用,U-PEG被I-R6G有效包裹,並在水中自發組裝成球形奈米顆粒。這些奈米顆粒具有可調節的I-R6G負載量和粒徑、強烈的螢光特性、良好的結構穩定性、在水溶液生理環境中的抗溶血特性、選擇性和快速的二氧化碳響應,以及可控的二氧化碳敏感I-R6G釋放。在靶向癌細胞時,I-R6G包裹的U-PEG奈米製劑展現出顯著的選擇性毒性,而對正常細胞無害。更重要的是,細胞實驗證實,當培養基中含有二氧化碳時,癌細胞對I-R6G包裹奈米顆粒的選擇性內化顯著增加。隨著奈米顆粒崩解,I-R6G與二氧化碳的相互作用加速,最終促進了癌細胞的凋亡。因此,將二氧化碳敏感的抗癌劑I-R6G納入這種自組裝奈米載體系統,成為提高化療效率並減少副作用的重要策略,為改進化療提供了有前途的途徑。
因此,在第二項研究中,我們開發了二氧化碳響應螢光材料,這些材料有望成為有效的抗癌劑和生物成像熒光探針。我們成功合成了一種由帶有pH敏感螺環單元的R6G和自互補多重氫鍵腺嘌呤基團 (AR) 組成的二氧化碳敏感螢光材料。AR在微酸性水溶液中具有顯著的低水溶性,但在典型的有機溶劑中容易溶解。腺嘌呤基團的獨特極性雜環結構賦予其化學反應性,使其能夠對二氧化碳產生反應。因此,疏水性的AR在引入二氧化碳後能迅速完全溶解於水中,形成自組裝的球形奈米粒子。這些納米粒子在水中展示出獨特的自發螢光特性。此外,它們的光物理特性、表面電荷、酸鹼行為和自組裝結構可以通過二氧化碳和氮氣交替鼓泡進行精確和穩定的調控。這種能力使得AR的物理性質可以精確操控。令人感興趣的是,體外細胞實驗顯示,二氧化碳誘導的腺嘌呤基團質子化顯著增強了AR的抗溶血特性,導致在低劑量下對癌細胞具有高度選擇性和強效的細胞毒性,而對正常細胞無影響。相反,原本的AR在正常或癌細胞中並不顯示出選擇性毒性。因此,這種新型二氧化碳敏感系統在提高抗腫瘤藥物的安全性和有效性方面具有重要潛力。
在第三項研究中,我們進一步拓展了新型二氧化碳敏感羅丹明基材料和含有胞嘧啶基團的奈米載體,以通過抗癌劑和奈米載體之間的自互補氫鍵相互作用來提高藥物負載含量,從而提高癌症化療的安全性和效率。我們成功開發了一種二氧化碳敏感的強效抗癌劑(Cy-R6G)和超分子奈米載體(Cy-PEG。Cy-PEG具有有效包裹Cy-R6G的能力,並且由於Cy-R6G和Cy-PEG的胞嘧啶組分之間的自互補氫鍵相互作用,在水性環境中自發形成球形奈米粒子。
Cy-R6G負載的Cy-PEG奈米製劑展示了許多獨特的物理特性,包括可調節的粒子大小、獨特的光吸收和螢光特性、在含血清的生理環境中出色的Cy-R6G負載穩定性、對SRBCs的強抗溶血特性、高靈敏度和選擇性的二氧化碳響應,以及通過二氧化碳/pH敏感實現優秀的釋放Cy-R6G的能力。
細胞毒性評估顯示,Cy-R6G負載的Cy-PEG奈米製劑對HeLa癌細胞表現出選擇性的細胞毒性,而對健康細胞沒有顯著的細胞毒性影響。此外,相較於原Cy-R6G和普通培養基中的Cy-R6G負載Cy-PEG,這些奈米製劑在二氧化碳豐富的培養基中顯示出更高水平的細胞毒性。更有趣的是,細胞內吸收(共聚焦顯微鏡)和細胞毒性機制(流式細胞儀)檢測結果清楚地表明,在培養基中引入二氧化碳顯著提高了Cy-R6G負載的Cy-PEG奈米製劑選擇性吸收進入癌性HeLa細胞的速率,通過微胞吞作用,促進了包裹的Cy-R6G在細胞內的釋放,並導致癌細胞的強效凋亡誘導,與普通培養基中的Cy-R6G負載Cy-PEG奈米製劑相比,效果更加顯著。
因此,這種創新系統不僅對於二氧化碳敏感抗癌載體系統的發展具有重要貢獻,而且在提高癌症治療的有效性和安全性方面具有巨大潛力。


A great deal of effort has been made over the last few decades to combat tumors that pose severe health risks. A persistent effort has been made to develop effective treatments for cancer, particularly chemotherapy. Despite this, traditional chemotherapy is still hindered by weak points, such as limited therapeutic efficacy and uncontrolled release of drugs, as well as numerous side effects brought by the non-specific and indistinguishable delivery of drugs. To overcome these barriers, smart bio-responsive drug delivery systems can be developed by using cancer features. Thus, in the first study, we have developed a strategy to design CO2-sensitive supramolecular drug distribution systems for efficient cancer treatment.
An anticancer agent comprising a CO2-sensitive imidazole-containing rhodamine 6G (I-R6G) and water-soluble poly(ethylene glycol) nanoparticles functionalized with uracil (U-PEG) was designed. As a result of the strong affinity interaction between U-PEG and I-R6G, I-R6G was effectively encapsulated by U-PEG and co-assembled spontaneously into spherical nanoobjects in water. These nanoparticles have tailorable I-R6G-loading and size of particles, as well as intense fluorescence characteristics, good structural durability, antihemolytic activity in aqueous physiological settings, selective and rapid CO2 response, and well-monitored CO2-sensitive I-R6G release. I-R6G-encapsulated U-PEG nanoformulations demonstrated remarkably selective cytotoxicity in targeting cancer cells while leaving normal cells unharmed. Importantly, cellular assays verified that including CO2 in the culture media significantly enhanced cancer cells' selective internalization of I-R6G-encapsulated nanoparticles. Consequently, there was an intensified intracellular I-R6G release as the nanoparticles disassembled, facilitating its interaction with CO2. This process ultimately expedited the induction of apoptotic cell death in cancer cells. Hence, the incorporation of a CO2-sensitive anticancer agent I-R6G into this self-organized nanocarrier system emerges as a crucial element, offering a promising avenue to improve the efficiency of chemotherapy while mitigating its adverse effects. This inspired us to further develop a CO2-sensitive rhodamine-based potent anticancer agent using a CO2-responsive component.
Therefore, in the second study, we have created CO2-responsive fluorescent materials that hold promise as effective anticancer agents and as bioimaging fluorescent probes. A CO2-sensitive fluorescent material comprised of rhodamine 6G with a pH-sensitive spiro cyclic unit and a self-complementary multiple hydrogen-bonded adenine group (AR) was synthesized successfully in just two simple steps. AR exhibited remarkably low water solubility, even in a mildly acidic aqueous environment, yet it readily dissolved in typical organic solvents. The distinctive polar heteroaromatic structure of the adenine group grants chemical reactivity, enabling it to respond to CO2. Consequently, the hydrophobic AR can swiftly and fully soluble in water upon simple CO2 introduction, forming self-organized spherical-like nanoobjects. The resulting nanoobjects exhibited distinctive spontaneous fluorescent properties in water. Furthermore, their photophysical attributes, surface charge, acid-base behavior, and self-assembled structure can be readily and consistently modulated (on and off) through alternative cycles of CO2 and N2 bubbling. This capability enables precise manipulation of AR’s physical property. Interestingly, in vitro cell assays revealed that the adenine group’s protonation by CO2 significantly augments the anti-hemolytic properties of AR. This enhancement leads to highly selective and potent cytotoxic effects against cancer cells at low doses while leaving normal cells unaffected. In contrast, pristine AR didn’t display a selective cytotoxic effect on normal or cancer cells. Hence, this newly innovated CO2-sensitive system holds significant promise in improving the safety and efficacy of antitumor drugs.
In our third study, we have extended the advancement of novel CO2-sensitive rhodamine-based material and a nanocarrier with cytosine moieties in order to have substantial drug-loading content enhanced by the self-complementary interactions of hydrogen bonding between the anticancer agent and the nanocarrier to improve the safety and efficiency of cancer chemotherapy. Thus, a CO2-responsive potent anticancer agent (Cy-R6G) and supramolecular nanocarrier (Cy-PEG) were successfully developed. Cy-PEG exhibited the capacity to efficiently encapsulate Cy-R6G with tunable and substantial loading contents leading to the spontaneous formation of spherical nanoparticles in aqueous environments due to the self-complementary hydrogen bonding interactions between the cytosine components of Cy-R6G and Cy-PEG. The Cy-R6G-loaded Cy-PEG nanoformulations exhibited numerous unique physical properties, including a tunable size of particles, distinctive optical absorption, fluorescence features, and excellent Cy-R6G-loading stability in biological media with serum under physiological settings, robust anti-hemolytic activity against SRBCs, higher sensitivity and selectivity of CO2-response in water, and excellent on-demand release of Cy-R6G facilitated by the CO2/pH-sensitive disruption. Cytotoxicity evaluations indicated that Cy-R6G-loaded Cy-PEG nanoformulations exhibited selective cytotoxicity of cancerous HeLa cells without significant cytotoxic impacts on healthy cells. Additionally, it exhibited higher levels of cytotoxicity at lower doses in CO2-rich culture media relative to pristine Cy-R6G and Cy-R6G-loaded Cy-PEG in regular culture media. More interestingly, examinations of intracellular uptake (confocal microscopy) and mechanisms of cytotoxicity (flow cytometry) provided clear evidence that the inclusion of CO2 in the culture medium notably enhanced the selective absorption rate of Cy-R6G-loaded Cy-PEG nanoformulations into cancerous HeLa cells through micropinocytosis. This in turn facilitated the encapsulated Cy-R6G intracellular release and resulted in robust induction of death of cancer cells apoptotically relative to cells planted with Cy-R6G-loaded Cy-PEG nanoformulations in normal media. Consequently, this innovative system not only offers valuable contributions to the advancement of CO2-sensitive anticancer vehicle systems but also holds considerable potential for enhancing the effectiveness and safety of cancer treatment.

Declaration i Acknowledgments ii Dedication iii 摘要 iv Abstract vi List of Figures xv List of Tables xix List of Schemes xix List of Appendix Figures xx List of Abbreviations xx CHAPTER ONE 1 1. Introduction 1 1.1. Background 1 1.2. Motivation 5 1.3. Objectives of the Study 7 1.3.1. General Objectives 7 1.3.2. Specific Objectives 7 1.4. Dissertation Organization 7 CHAPTER TWO 9 2. Review of Literature 9 2.1. Cancer 9 2.2. Nanomedicine 12 2.3. Polymeric Micelles 13 2.3.1. Formation of PMs 13 2.3.2. Structure of PMs 14 2.3.3. Properties and Characterizations of PMs 15 2.3.3.1. Critical Micelle Concentration 15 2.3.3.2. Determination of Shape, Size, and PDI (Polydispersity Index) 16 2.3.4. Stability of PMs 17 2.3.5. Applications of PMs in Drug Delivery 18 2.3.6. Passive Targeting of PMs 18 2.3.7. Active Targeting of PMs 20 2.3.8. Stimuli-responsive PMs 20 2.3.8.1. pH-responsive PMs 21 2.4. CO2-responsive Materials 21 2.4.1. CO2-responsive Functional Moieties 22 2.5. Supramolecular Nucleobase Functionalized Nanomaterials 24 2.6. Rhodamine 6G and Its Derivatives 26 2.6.1. Anticancer Activity of Rhodamine Dyes 27 2.6.2 Isomeric Forms of R6G Derivatives 28 CHAPTER THREE 29 3. Materials and Methods 29 3.1. Chemicals and Materials 29 3.2. Synthesis of I-R6G 29 3.3 Synthesis of U-PEG 30 3.4. Synthesis of Primary Monoamine Adenine Derivate (Adenine-amine) 30 3.5. Synthesis of Adenine-functionalized R6G (AR) 30 3.6. Synthesis of Cytosine-methyl Acrylate (Cy-MA) 30 3.7. Synthesis of Cytosine-propyl Amine (Cy-amine) 31 3.8. Synthesis of Cytosine-R6G (Cy-R6G) 31 3.9. Synthesis of Cy-PEG 31 3.10. Determination of Critical Micelle Concentration (CMC) 32 3.11. Preparation of I-R6G-, Cy-R6G- and R6G-loaded Polymeric Nanoparticles 32 3.12. Preparation of Aqueous Solutions of Samples Treated with CO2/N2 33 3.13. Preparation of CO2-Treated DMEM 33 3.14. Characterizations 33 3.14.1. Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (1H-/13C-NMR) Spectra 33 3.14.2. Mass Spectrometry 33 3.14.4. Size Exclusion Chromatography (SEC) 34 3.14.5. Thermogravimetric Analysis (TGA) 34 3.14.6. Photoluminescence (PL) and Ultraviolet-Visible (UV-Vis) Spectroscopies 34 3.14.7. Dynamic Light Scattering (DLS) and Zeta Potentials 34 3.14.8. Kinetic Stability of Polymeric Micelles 35 3.14.9. Atomic Force (AFM) and Scanning Electron (SEM) Microscopies 35 3.15. In Vitro Drug Release Evaluations 35 3.16. Cell Lines and Culture Conditions 36 3.17. Hemolysis Assays 36 3.18. Cytotoxicity Assays 36 3.19. Cellular Internalization Studies 37 3.20. Assessment of Cellular Uptake of Polymeric Nanoparticles by Flow Cytometry 37 3.21. Assessment of Apoptotic and Necrotic Cell Death 38 3.22. Statistical Analysis 38 CHAPTER FOUR 39 4. Development of CO2-responsive Supramolecular Drug Carrier System for Potential Application in Anticancer Treatment 39 4.1 Introduction 39 4.2. Results and Discussion 43 4.2.1. Synthesis of the Supramolecular Nanocarrier 43 4.2.2. Synthesis of I-R6G 45 4.2.3. Size and Morphologies of I-R6G-encapsulated and Pristine U-PEG Micelles 46 4.2.4. CO2-response of I-R6G-encapsulated U-PEG Nanogels 50 4.2.5. Kinetic Stability and In Vitro I-R6G Release Property of the Micelle 53 4.2.6. In Vitro Cytotoxicity and Cellular Uptake Studies 56 4.2.7. Cell Death Mechanism Study 62 4.3. Summary 65 CHAPTER FIVE 66 5. CO2-Responsive Adenine Nucleobase: New Insight into Manipulating the Photophysical Properties and Biological Activities of Functional Fluorescent Molecules 66 5.1. Introduction 66 5.2. Results and Discussion 68 5.2.1. Synthesis and Characterizations of Adenine-amine 69 5.2.2. Synthesis and Characterizations of AR 70 5.2.3. Solubility and pH-responsive Behavior of AR 72 5.2.4. CO2-Responsiveness of AR 75 5.2.5. Effect of CO2 Bubbling on Morphological Changes of AR 78 5.2.6. Reversible Optophysical Properties of AR upon Alternative CO2/N2-treatment 79 5.2.7. Effect of Temperature on Optophysical Properties of CO2-treated AR 81 5.2.8. Hemolysis Study 82 5.2.9. In Vitro Cytotoxicity Study 83 5. 3. Summary 85 CHAPTER SIX 86 6. A CO2-Responsive Nano-Carrier System Developed Via Self-Complementary Interactions Between Cytosine-Functionalized Chemotherapeutic Agent and Carrier for Selective Cancer Treatment 86 6.1. Introduction 86 6.2. Result and Discussion 90 6.2.1. Synthesis and Characterization of Cy-MA 91 6.2.2. Synthesis and Characterization of Cy-amine 92 6.2.3. Synthesis and Characterization of Cytosine-R6G (Cy-R6G) 94 6.2.4. Solubility of Cy-R6G in Organic Solvents 96 6.2.5. pH-responsiveness of Cy-R6G 97 6.2.6. CO2-responsive Properties of Cy-R6G and Morphological Changes 99 6.2.7. Reversible Optophysical Properties of Cy-R6G on Alternative CO2-/N2-treatment 103 6.2.8. Temperature Effect on the Optophysical Properties of CO2-treated Cy-R6G 105 6.2.9. Synthesis and Characterizations of Cy-PEG 107 6.2.10. Cy-R6G Encapsulation and Morphology of Cy-R6G-loaded Cy-PEG 111 6.2.11. CO2-response of Cy-R6G-loaded Cy-PEG Nanoparticles 113 6.2.12. Kinetic Stability, Cy-R6G Release, and Disassembly of Cy-R6G-loaded Cy-PEG 114 6.2.13. Hemolysis Assays 117 6.2.14. Cytotoxicity and Cell Viability Study 118 6.2.15. Cellular Uptake Evaluations 119 6.2.16. Cell Death Mechanism 122 6.3. Summary 125 CHAPTER SEVEN 127 7. Conclusions and Future Outlooks 127 7.1. Conclusions 127 7.2. Future Outlooks 130 References 131 Appendix A 152 Appendix B 155 Appendix C 156

1. Duffy, M. The war on cancer: are we winning? Tumor Biology 2013, 34 (3), 1275-1284.
2. Zehir, A.; Benayed, R.; Shah, R. H.; Syed, A.; Middha, S.; Kim, H. R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S. M. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine 2017, 23 (6), 703-713.
3. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W. Cancer and radiation therapy: current advances and future directions. International journal of medical sciences 2012, 9 (3), 193.
4. Dy, G. K.; Adjei, A. A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA: a cancer journal for clinicians 2013, 63 (4), 249-279.
5. Kaur, K.; Aggarwal, G.; Harikumar, S. Nanomedicine In Cancer: A Concise Review.
6. Longmire, M. R.; Ogawa, M.; Choyke, P. L.; Kobayashi, H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjugate chemistry 2011, 22 (6), 993-1000.
7. Cassidy, J.; Schätzlein, A. G. Tumour-targeted drug and gene delivery: principles and concepts. Expert reviews in molecular medicine 2004, 6 (19), 1-17.
8. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature reviews Drug discovery 2010, 9 (8), 615-627.
9. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 2000, 65 (1-2), 271-284.
10. Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting 2007, 15 (7-8), 457-464.
11. Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and molecular life sciences 2009, 66 (17), 2873-2896.
12. Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine: current status and future prospects. The FASEB journal 2005, 19 (3), 311-330.
13. Torchilin, V. P. Multifunctional nanocarriers. Advanced drug delivery reviews 2006, 58 (14), 1532-1555.
14. Hall, J. B.; Dobrovolskaia, M. A.; Patri, A. K.; McNeil, S. E. Characterization of nanoparticles for therapeutics. 2007.
15. Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nature Reviews Materials 2021, 6 (4), 351-370.
16. Wang, Y.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nature Reviews Materials 2017, 2 (6), 1-14.
17. Porter, C. J.; Charman, W. N. In vitro assessment of oral lipid-based formulations. Advanced drug delivery reviews 2001, 50, S127-S147.
18. Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 2021, 332, 312-336.
19. Riess, G. Micellization of block copolymers. Progress in polymer science 2003, 28 (7), 1107-1170.
20. Jones, M.-C.; Leroux, J.-C. Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics 1999, 48 (2), 101-111.
21. Luo, Y.; Yao, X.; Yuan, J.; Ding, T.; Gao, Q. Preparation and drug controlled-release of polyion complex micelles as drug delivery systems. Colloids and Surfaces B: Biointerfaces 2009, 68 (2), 218-224.
22. Voets, I. K.; de Keizer, A.; Cohen Stuart, M. A.; Justynska, J.; Schlaad, H. Irreversible structural transitions in mixed micelles of oppositely charged diblock copolymers in aqueous solution. Macromolecules 2007, 40 (6), 2158-2164.
23. Ilhami, F. B.; Bayle, E. A.; Cheng, C.-C. Complementary Nucleobase Interactions Drive Co-Assembly of Drugs and Nanocarriers for Selective Cancer Chemotherapy. Pharmaceutics 2021, 13 (11), 1929.
24. Alemayehu, Y. A.; Ilhami, F. B.; Manayia, A. H.; Cheng, C.-C. Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomaterialia 2021, 129, 235-244.
25. Gebeyehu, B. T.; Lee, A.-W.; Huang, S.-Y.; Muhabie, A. A.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal 2019, 110, 403-412.
26. Yoncheva, K.; Calleja, P.; Agüeros, M.; Petrov, P.; Miladinova, I.; Tsvetanov, C.; Irache, J. M. Stabilized micelles as delivery vehicles for paclitaxel. International journal of pharmaceutics 2012, 436 (1-2), 258-264.
27. Caliceti, P.; Veronese, F. M. Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews 2003, 55 (10), 1261-1277.
28. Owens III, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics 2006, 307 (1), 93-102.
29. Chatterjee, S.; Hui, C.-L. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 2019, 24 (14), 2547.
30. Li, L.; Yang, W.-W.; Xu, D.-G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. Journal of Drug Targeting 2019, 27 (4), 423-433.
31. Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Advanced Drug Delivery Reviews 2012, 64 (9), 866-884.
32. Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics 2009, 71 (3), 431-444.
33. Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer research 1989, 49 (16), 4373-4384.
34. Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nature reviews Molecular cell biology 2010, 11 (1), 50-61.
35. Guan, J.; Zhou, Z.-Q.; Chen, M.-H.; Li, H.-Y.; Tong, D.-N.; Yang, J.; Yao, J.; Zhang, Z.-Y. Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery. Acta biomaterialia 2017, 60, 244-255.
36. Chen, W.; Zhong, P.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release 2013, 169 (3), 171-179.
37. DeBerardinis, R. J.; Chandel, N. S. Fundamentals of cancer metabolism. Science Advances 2016, 2 (5), e1600200.
38. Cummins, E. P.; Strowitzki, M. J.; Taylor, C. T. Mechanisms and consequences of oxygen and carbon dioxide sensing in mammals. Physiological Reviews 2020, 100 (1), 463-488.
39. Piasentin, N.; Milotti, E.; Chignola, R. The control of acidity in tumor cells: A biophysical model. Scientific Reports 2020, 10 (1), 13613.
40. Helmlinger, G.; Sckell, A.; Dellian, M.; Forbes, N. S.; Jain, R. K. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research 2002, 8 (4), 1284-1291.
41. Darabi, A.; Jessop, P. G.; Cunningham, M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chemical Society Reviews 2016, 45 (15), 4391-4436.
42. Liu, H.; Lin, S.; Feng, Y.; Theato, P. CO2-Responsive polymer materials. Polymer Chemistry 2017, 8 (1), 12-23.
43. Yong, H. W.; Kakkar, A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. Polymer International 2022, 71 (5), 514-520.
44. Zhang, S.; Yang, Y.; Liu, S.; Dong, R.; Qian, Z. Influence of the hypercapnic tumor microenvironment on the viability of HeLa cells screened by a CO2-gradient-generating device. ACS omega 2021, 6 (40), 26773-26781.
45. Varghese, A. M.; Karanikolos, G. N. CO2 capture adsorbents functionalized by amine–bearing polymers: A review. International Journal of Greenhouse Gas Control 2020, 96, 103005.
46. Jiang, B.; Zhang, Y.; Huang, X.; Kang, T.; Severtson, S. J.; Wang, W.-J.; Liu, P. Tailoring CO2-responsive polymers and nanohybrids for green chemistry and processes. Industrial & Engineering Chemistry Research 2019, 58 (33), 15088-15108.
47. Kutushov, M.; Gorelik, O. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice. Neoplasma 2013, 60 (3), 262-273.
48. Alford, R.; Simpson, H. M.; Duberman, J.; Hill, G. C.; Ogawa, M.; Regino, C.; Kobayashi, H.; Choyke, P. L. Toxicity of organic fluorophores used in molecular imaging: literature review. Molecular imaging 2009, 8 (6), 7290.2009. 00031.
49. Li, Y.; Chen, Q.; Pan, X.; Lu, W.; Zhang, J. Development and challenge of fluorescent probes for bioimaging applications: from visualization to diagnosis. Topics in Current Chemistry 2022, 380 (4), 22.
50. Magut, P. K.; Das, S.; Fernand, V. E.; Losso, J.; McDonough, K.; Naylor, B. M.; Aggarwal, S.; Warner, I. M. Tunable cytotoxicity of rhodamine 6G via anion variations. Journal of the American Chemical Society 2013, 135 (42), 15873-15879.
51. Bhattarai, N.; Mathis, J. M.; Chen, M.; Perez, R. L.; Siraj, N.; Magut, P. K.; McDonough, K.; Sahasrabudhe, G.; Warner, I. M. Endocytic selective toxicity of rhodamine 6G nanoGUMBOS in breast cancer cells. Molecular pharmaceutics 2018, 15 (9), 3837-3845.
52. Bernal, S. D.; Lampidis, T. J.; Summerhayes, I. C.; Chen, L. B. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science 1982, 218 (4577), 1117-1119.
53. Lin, C. T.; Mahloudji, A. M.; Li, L.; Hsiao, M. W. Molecular aggregation of rhodamine 6G probed by optical and electrochemical techniques. Chemical Physics Letters 1992, 193 (1-3), 8-16.
54. Zhu, R.; Zhang, F.; Peng, Y.; Xie, T.; Wang, Y.; Lan, Y. Current progress in cancer treatment using nanomaterials. Frontiers in Oncology 2022, 12, 930125.
55. Wang, J.-J.; Lei, K.-F.; Han, F. Tumor microenvironment: recent advances in various cancer treatments. European Review for Medical & Pharmacological Sciences 2018, 22 (12).
56. Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International journal of oncology 2019, 54 (2), 407-419.
57. Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chemical Society Reviews 2017, 46 (21), 6600-6620.
58. Zhang, A.; Jung, K.; Li, A.; Liu, J.; Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science 2019, 99, 101164.
59. Ding, C.; Tong, L.; Feng, J.; Fu, J. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules 2016, 21 (12), 1715.
60. Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. M. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019, 24 (6), 1117.
61. Brahimi-Horn, M. C.; Chiche, J.; Pouysségur, J. Hypoxia and cancer. Journal of Molecular Medicine 2007, 85, 1301-1307.
62. Kikuchi, R.; Iwai, Y.; Tsuji, T.; Watanabe, Y.; Koyama, N.; Yamaguchi, K.; Nakamura, H.; Aoshiba, K. Hypercapnic tumor microenvironment confers chemoresistance to lung cancer cells by reprogramming mitochondrial metabolism in vitro. Free Radical Biology and Medicine 2019, 134, 200-214.
63. Organization, W.H., Cancer 2022. https://www.who.int/news-room/fact-sheets/detail/cancer.
64. Yang, T.-H.; Hsu, R.-J.; Huang, W.-H.; Lee, A.-R. Pyrrole indolin-2-One Based Kinase Inhibitor as Anti-Cancer Agents. Journal of Cancer Treatment and Diagnosis 2018, 2 (3).
65. Lum, J. J.; Bauer, D. E.; Kong, M.; Harris, M. H.; Li, C.; Lindsten, T.; Thompson, C. B. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120 (2), 237-248.
66. Hahn, W. C.; Stewart, S. A.; Brooks, M. W.; York, S. G.; Eaton, E.; Kurachi, A.; Beijersbergen, R. L.; Knoll, J. H.; Meyerson, M.; Weinberg, R. A. Inhibition of telomerase limits the growth of human cancer cells. Nature Medicine 1999, 5 (10), 1164-1170.
67. Pavlova, N. N.; Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell metabolism 2016, 23 (1), 27-47.
68. Ralph, S. J.; Rodríguez-Enríquez, S.; Neuzil, J.; Saavedra, E.; Moreno-Sánchez, R. The causes of cancer revisited:“mitochondrial malignancy” and ROS-induced oncogenic transformation–why mitochondria are targets for cancer therapy. Molecular aspects of medicine 2010, 31 (2), 145-170.
69. Doll, R.; Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. JNCI: Journal of the National Cancer Institute 1981, 66 (6), 1192-1308.
70. Organization, W. H. National cancer control programs: policies and managerial guidelines; World Health Organization, 2002.
71. Wu, H.-C.; Chang, D.-K.; Huang, C.-T. Targeted therapy for cancer. J Cancer Mol 2006, 2 (2), 57-66.
72. Dorai, T.; Aggarwal, B. B. Role of chemopreventive agents in cancer therapy. Cancer Letters 2004, 215 (2), 129-140.
73. DeVita, V. T.; Chu, E. A history of cancer chemotherapy. Cancer research 2008, 68 (21), 8643-8653.
74. Hauner, K.; Maisch, P.; Retz, M. Side effects of chemotherapy. Der Urologe. Ausg. A 2017, 56 (4), 472-479.
75. Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. Aaps Pharmscitech 2014, 15 (4), 862-871.
76. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS nano 2009, 3 (1), 16-20.
77. Ale, E. C.; Maggio, B.; Fanani, M. L. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. Biochimica et Biophysica Acta (BBA)-Biomembranes 2012, 1818 (11), 2767-2776.
78. Yokoyama, M. Polymeric micelles for the targeting of hydrophobic drugs. Polymeric drug delivery systems 2005, 148, 533-576.
79. Francis, M. F.; Lavoie, L.; Winnik, F. M.; Leroux, J.-C. Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles. European Journal of Pharmaceutics and Biopharmaceutics 2003, 56 (3), 337-346.
80. Yokoyama, M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. Journal of Experimental & Clinical Medicine 2011, 3 (4), 151-158.
81. Yokoyama, M. Block copolymers as drug carriers. Critical reviews in therapeutic drug carrier systems 1992, 9 (3-4), 213-248.
82. Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces 1999, 16 (1-4), 3-27
83. Carstens, M. G.; Rijcken, C. J.; Nostrum, C. F. v.; Hennink, W. E. Pharmaceutical micelles: combining longevity, stability, and stimuli sensitivity. In Multifunctional pharmaceutical nanocarriers, Springer, 2008; pp 263-308.
84. Kwon, G. S. Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews™ in Therapeutic Drug Carrier Systems 2003, 20 (5).
85. Molineux, G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treatment Reviews 2002, 28, 13-16.
86. Torchilin, V. P. Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release 2001, 73 (2-3), 137-172.
87. Suek, N. W.; Lamm, M. H. Computer Simulation of Architectural and Molecular Weight Effects on the Assembly of Amphiphilic Linear-Dendritic Block Copolymers in Solution. Langmuir 2008, 24 (7), 3030-3036.
88. Bae, Y. H.; Yin, H. Stability issues of polymeric micelles. Journal of Controlled Release 2008, 1 (131), 2-4.
89. Schick, M.; Gilbert, A. Effect of urea, guanidinium chloride, and dioxane on the c.m.c. of branched-chain nonionic detergents. Journal of Colloid Science 1965, 20 (5), 464-472.
90. Al Sabagh, A. Surface and thermodynamic properties of p-alkylbenzene polyethoxylated and glycerated sulfonate derivative surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 134 (3), 313-320.
91. Gohy, J.-F. Block copolymer micelles. In Block copolymers II, Springer, 2005; pp 65-136.
92. Malmsten, M. Surfactants and polymers in drug delivery; CRC Press, 2002.
93. Nagasaki, Y.; Okada, T.; Scholz, C.; Iijima, M.; Kato, M.; Kataoka, K. The reactive polymeric micelle based on an aldehyde-ended poly (ethylene glycol)/poly (lactide) block copolymer. Macromolecules 1998, 31 (5), 1473-1479.
94. Booth, C.; Attwood, D. Effects of block architecture and composition on the association properties of poly (oxyalkylene) copolymers in aqueous solution. Macromolecular Rapid Communications 2000, 21 (9), 501-527.
95. Cao, T.; Yin, W.; Webber, S. Poly (2-vinylnaphthalene-alt-maleic acid)-graft-polystyrene as a photoactive polymer micelle and stabilizer for polystyrene latexes. Macromolecules 1994, 27 (25), 7459-7464.
96. Del-real, A.; Garcóa-Garduño, M. V.; Castaño, V. M. Transmission electron microscopy observations of micelle structure in a vinyl acetate-based microemulsion. International Journal of Polymeric Materials 1998, 42 (3-4), 319-326.
97. Boylan, J. C.; Swarbrick, J. Encyclopedia of pharmaceutical technology; Marcel Dekker, 2001.
98. McCalla, P. Pharmaceutical Dosage Forms: Disperse Systems. Canadian Journal of Hospital Pharmacy 1997, 50 (4).
99. Yang, C.; Attia, A. B.; Tan, J. P.; Ke, X.; Gao, S.; Hedrick, J. L.; Yang, Y. Y. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 2012, 33 (10), 2971-2979. DOI: 10.1016/j.biomaterials.2011.11.035.
100. Lo, C. L.; Huang, C. K.; Lin, K. M.; Hsiue, G. H. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials 2007, 28 (6), 1225-1235. DOI: 10.1016/j.biomaterials.2006.09.050.
101. Mourya, V.; Inamdar, N.; Nawale, R.; Kulthe, S. Polymeric micelles: general considerations and their applications. Indian J Pharm Educ Res 2011, 45 (2), 128-138.
102. Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013, 65 (1), 315-499.
103. Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013, 453 (1), 198-214.
104. Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013, 73 (8), 2412-2417.
105. Hatakeyama, H.; Akita, H.; Harashima, H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 2011, 63 (3), 152-160. DOI: 10.1016/j.addr.2010.09.001.
106. Park, J. H.; Lee, S.; Kim, J.-H.; Park, K.; Kim, K.; Kwon, I. C. Polymeric nanomedicine for cancer therapy. Progress in Polymer Science 2008, 33 (1), 113-137.
107. Chang, D.; Ma, Y.; Xu, X.; Xie, J.; Ju, S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Frontiers in Bioengineering and Biotechnology 2021, 9, 528.
108. Zhang, Q.; Lei, L.; Zhu, S. Gas-responsive polymers. ACS Publications: 2017.
109. Lin, S.; Theato, P. CO2‐responsive polymers. Macromolecular rapid communications 2013, 34 (14), 1118-1133.
110. Scott, L. M.; Robert, T.; Harjani, J. R.; Jessop, P. G. Designing the head group of CO 2-triggered switchable surfactants. RSC Advances 2012, 2 (11), 4925-4931.
111. Qi, Z.; Guoqiang, Y.; Wen-Jun, W.; Haomiao, Y.; Bo-Geng, L.; Shiping, Z. Preparation of N2/CO2 Triggered Reversibly Coagulatable and Redispersible Latexes by Emulsion Polymerization of Styrene with a Reactive Switchable Surfactant. 2012.
112. Fowler, C. I.; Jessop, P. G.; Cunningham, M. F. Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules 2012, 45 (7), 2955-2962.
113. Solomons, T. G.; Fryhle, C. B. Organic chemistry; John Wiley & Sons, 2008.
114. Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J. CO2-triggered switchable solvents, surfactants, and other materials. Energy & Environmental Science 2012, 5 (6), 7240-7253.
115. Ceschia, E.; Harjani, J. R.; Liang, C.; Ghoshouni, Z.; Andrea, T.; Brown, R. S.; Jessop, P. G. Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing. RSC Advances 2014, 4 (9), 4638-4645.
116. Bansal, M. DNA structure: Revisiting the Watson–Crick double helix. Current Science 2003, 1556-1563.
117. Yang, H.; Xi, W. Nucleobase-containing polymers: structure, synthesis, and applications. Polymers 2017, 9 (12), 666.
118. Krishnamurthy, R. Role of p K a of nucleobases in the origins of chemical evolution. Accounts of chemical research 2012, 45 (12), 2035-2044.
119. Caruso, T.; Capobianco, A.; Peluso, A. The oxidation potential of adenosine and adenosine-thymidine base pair in chloroform solution. Journal of the American Chemical Society 2007, 129 (49), 15347-15353.
120. Sabury, S. Synthesis, Characterization, and Applications of Nucleobase-Functionalized Conjugated Polymers. 2021.
121. Li, J.; Wang, Z.; Hua, Z.; Tang, C. Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. Journal of Materials Chemistry B 2020, 8 (8), 1576-1588.
122. Strekowski, L.; Wilson, B. Noncovalent interactions with DNA: an overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2007, 623 (1-2), 3-13.
123. Cheng, S.; Zhang, M.; Dixit, N.; Moore, R. B.; Long, T. E. Nucleobase self-assembly in supramolecular adhesives. Macromolecules 2012, 45 (2), 805-812.
124. Saini, G.; Kaur, S.; Tripathi, S.; Mahajan, C.; Thanga, H.; Verma, A. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 61 (4), 653-658.
125. Barzan, M.; Hajiesmaeilbaigi, F. Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye. Optik 2018, 159, 157-161.
126. Jaworska, A.; Wojcik, T.; Malek, K.; Kwolek, U.; Kepczynski, M.; Ansary, A. A.; Chlopicki, S.; Baranska, M. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchimica Acta 2015, 182, 119-127.
127. Wang, Y.; Wang, X.; Ma, W.; Lu, R.; Zhou, W.; Gao, H. Recent developments in rhodamine-based chemosensors: A review of the years 2018–2022. Chemosensors 2022, 10 (10), 399.
128. Rajasekar, M. Recent Trends in Rhodamine derivatives as fluorescent probes for biomaterial applications. Journal of Molecular Structure 2021, 1235, 130232.
129. Zeng, S.; Liu, X.; Kafuti, Y. S.; Kim, H.; Wang, J.; Peng, X.; Li, H.; Yoon, J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chemical Society Reviews 2023.
130. Battula, H.; Bommi, S.; Bobde, Y.; Patel, T.; Ghosh, B.; Jayanty, S. Distinct rhodamine B derivatives exhibiting dual effect of anticancer activity and fluorescence property. Journal of Photochemistry and Photobiology 2021, 6, 100026.
131. Mousavi, S. M.; Zarei, M.; Hashemi, S. A.; Babapoor, A.; Amani, A. M. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial cells, nanomedicine, and biotechnology 2019, 47 (1), 1132-1148.
132. Bhattarai, N.; Chen, M.; L. Pérez, R.; Ravula, S.; M. Strongin, R.; McDonough, K.; M. Warner, I. Comparison of chemotherapeutic activities of rhodamine-based GUMBOS and NanoGUMBOS. Molecules 2020, 25 (14), 3272.
133. Deng, F.; Sun, D.; Yang, S.; Huang, W.; Huang, C.; Xu, Z.; Liu, L. Comparison of rhodamine 6G, rhodamine B and rhodamine 101 spirolactam based fluorescent probes: A case of pH detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 268, 120662.
134. Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical reviews 2012, 112 (3), 1910-1956.
135. Ngan, V. T. T.; Chiou, P.-Y.; Ilhami, F. B.; Bayle, E. A.; Shieh, Y.-T.; Chuang, W.-T.; Chen, J.-K.; Lai, J.-Y.; Cheng, C.-C. A CO2-responsive imidazole-functionalized fluorescent material mediates cancer chemotherapy. Pharmaceutics 2023, 15 (2), 354.
136. Cheng, C.-C.; Gebeyehu, B. T.; Huang, S.-Y.; Alemayehu, Y. A.; Sun, Y.-T.; Lai, Y.-C.; Chang, Y.-H.; Lai, J.-Y.; Lee, D.-J. Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. Journal of colloid and interface science 2019, 552, 166-178.
137. Cunningham, M. F.; Jessop, P. G. Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules 2019, 52 (18), 6801-6816.
138. Wurm, F. R.; Boyer, C.; Sumerlin, B. S. Progress on stimuli-responsive polymers. Macromolecular rapid communications 2021, 42 (18), 2100512.
139. Yan, Q.; Zhao, Y. Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chemical Communications 2014, 50 (79), 11631-11641.
140. Zhao, X.; Bai, J.; Yang, W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biology & Medicine 2021, 18 (2), 319.
141. Bao, Y.; Yin, M.; Hu, X.; Zhuang, X.; Sun, Y.; Guo, Y.; Tan, S.; Zhang, Z. A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. Journal of Controlled Release 2016, 235, 182-194.
142. Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer 2017, 17 (1), 20-37.
143. Zarrintaj, P.; Jouyandeh, M.; Ganjali, M. R.; Hadavand, B. S.; Mozafari, M.; Sheiko, S. S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T. J.; Saeb, M. R. Thermo-sensitive polymers in medicine: A review. European Polymer Journal 2019, 117, 402-423.
144. Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2018, 24 (1), 4.
145. Gu, H.; Mu, S.; Qiu, G.; Liu, X.; Zhang, L.; Yuan, Y.; Astruc, D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordination Chemistry Reviews 2018, 364, 51-85.
146. Kumar, V.; Koyasseril-Yehiya, T. M.; Thayumanavan, S. Enzyme-triggered nanomaterials and their applications. Molecular Assemblies: Characterization and Applications 2020, 95-107.
147. Baroncini, M.; Groppi, J.; Corra, S.; Silvi, S.; Credi, A. Light‐Responsive (Supra) Molecular Architectures: Recent Advances. Advanced Optical Materials 2019, 7 (16), 1900392.
148. Jia, R.; Teng, L.; Gao, L.; Su, T.; Fu, L.; Qiu, Z.; Bi, Y. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. International journal of nanomedicine 2021, 1525-1551.
149. Rahim, M. A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers 2021, 13 (4), 670.
150. Chen, M.; Gao, C.; Lü, S.; Chen, Y.; Liu, M. Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC advances 2016, 6 (11), 9164-9174.
151. Li, Z.; Song, N.; Yang, Y.-W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 2019, 1 (2), 345-368.
152. Das, S. S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G. Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020, 12 (6), 1397.
153. Taylor, C. T.; Slattery, C.; Leonard, M. O.; McLoughlin, P.; Fitzpatrick, S. F.; Bruning, U.; Scholz, C. C.; Cummins, E. P.; Oliver, K. M.; Lenihan, C. R. Immunity and Inflammation in Mammalian. 2010.
154. Selfridge, A. C.; Cavadas, M. A. S.; Scholz, C. C.; Campbell, E. L.; Welch, L. C.; Lecuona, E.; Colgan, S. P.; Barrett, K. E.; Sporn, P. H. S.; Sznajder, J. I. Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. Journal of Biological Chemistry 2016, 291 (22), 11800-11808.
155. Parks, S. K.; Cormerais, Y.; Pouysségur, J. Hypoxia and cellular metabolism in tumour pathophysiology. The Journal of physiology 2017, 595 (8), 2439-2450.
156. Bautista, A. F.; Akca, O. Hypercapnia: is it protective in lung injury? Medical Gas Research 2013, 3, 1-5.
157. Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34 (14), 3647-3657.
158. Manayia, A. H.; Ilhami, F. B.; Huang, S.-Y.; Su, T.-H.; Huang, C.-W.; Chiu, C.-W.; Lee, D.-J.; Lai, J.-Y.; Cheng, C.-C. Photoreactive mercury-containing metallosupramolecular nanoparticles with tailorable properties that promote enhanced cellular uptake for effective cancer chemotherapy. Biomacromolecules 2023, 24 (2), 943-956.
159. Teng, D.-y.; Wu, Z.-m.; Zhang, X.-g.; Wang, Y.-x.; Zheng, C.; Wang, Z.; Li, C.-x. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 2010, 51 (3), 639-646.
160. Gebeyehu, B. T.; Huang, S.-Y.; Lee, A.-W.; Chen, J.-K.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C. Dual stimuli-responsive nucleobase-functionalized polymeric systems as efficient tools for manipulating micellar self-assembly behavior. Macromolecules 2018, 51 (3), 1189-1197.
161. Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics 2015, 93, 52-79.
162. Li, Z.; Wu, S.; Han, J.; Han, S. Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor. Analyst 2011, 136 (18), 3698-3706.
163. Lei, X.; Xu, Y.; Zhu, L.; Wang, X. Highly efficient and reversible CO 2 capture through 1, 1, 3, 3-tetramethylguanidinium imidazole ionic liquid. RSC Advances 2014, 4 (14), 7052-7057.
164. Ostacolo, L.; Marra, M.; Ungaro, F.; Zappavigna, S.; Maglio, G.; Quaglia, F.; Abbruzzese, A.; Caraglia, M. In vitro anticancer activity of docetaxel-loaded micelles based on poly (ethylene oxide)-poly (epsilon-caprolactone) block copolymers: Do nanocarrier properties have a role? Journal of controlled release 2010, 148 (2), 255-263.
165. Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 2011, 63 (3), 136-151.
166. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31 (13), 3657-3666.
167. Wei, T.; Liu, J.; Ma, H.; Cheng, Q.; Huang, Y.; Zhao, J.; Huo, S.; Xue, X.; Liang, Z.; Liang, X.-J. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano letters 2013, 13 (6), 2528-2534.
168. Choi, J.; Reipa, V.; Hitchins, V. M.; Goering, P. L.; Malinauskas, R. A. Physicochemical characterization and in Vitro hemolysis evaluation of silver nanoparticles. Toxicological Sciences 2011, 123 (1), 133-143.
169. Dausend, J.; Musyanovych, A.; Dass, M.; Walther, P.; Schrezenmeier, H.; Landfester, K.; Mailänder, V. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromolecular bioscience 2008, 8 (12), 1135-1143.
170. Foroozandeh, P.; Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale research letters 2018, 13 (1), 339.
171. Van Engeland, M.; Nieland, L. J.; Ramaekers, F. C.; Schutte, B.; Reutelingsperger, C. P. Annexin V‐affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry: The Journal of the International Society for Analytical Cytology 1998, 31 (1), 1-9.
172. Jessop, P. G.; Kozycz, L.; Rahami, Z. G.; Schoenmakers, D.; Boyd, A. R.; Wechsler, D.; Holland, A. M. Tertiary amine solvents having switchable hydrophilicity. Green Chemistry 2011, 13 (3), 619-623.
173. Quek, J. Y.; Davis, T. P.; Lowe, A. B. Amidine functionality as a stimulus-responsive building block. Chemical Society Reviews 2013, 42 (17), 7326-7334.
174. Liu, Y.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L. Switchable surfactants. Science 2006, 313 (5789), 958-960.
175. Jessop, P. G. Reversibly switchable surfactants and methods of use thereof. Google Patents: 2012.
176. Che, H.; Huo, M.; Peng, L.; Fang, T.; Liu, N.; Feng, L.; Wei, Y.; Yuan, J. CO2‐responsive nanofibrous membranes with switchable oil/water wettability. Angewandte Chemie 2015, 127 (31), 9062-9066.
177. Johari, H.; Parhizkar, Z.; Talebi, E. Effects of adenine on the pituitary-gonad axis in newborns rats. Pakistan Journal of Biological Sciences: PJBS 2008, 11 (20), 2413-2417.
178. Raczyńska, E. D.; Makowski, M.; Hallmann, M.; Kamińska, B. Geometric and energetic consequences of prototropy for adenine and its structural models–a review. RSC advances 2015, 5 (46), 36587-36604.
179. Xu, R.; Zheng, M.; Farajtabar, A.; Zhao, H. Solubility modelling and preferential solvation of adenine in solvent mixtures of (n, n-dimethylformamide, n-methyl pyrrolidone, propylene glycol and dimethyl sulfoxide) plus water. The Journal of Chemical Thermodynamics 2018, 125, 225-234.
180. Yao, S.-J.; Li, N.; Liu, J.; Dong, L.-Z.; Liu, J.-J.; Xin, Z.-F.; Li, D.-S.; Li, S.-L.; Lan, Y.-Q. Ferrocene-functionalized crystalline biomimetic catalysts for efficient CO2 photoreduction. Inorganic Chemistry 2022, 61 (4), 2167-2173.
181. Verma, S.; Mishra, A. K.; Kumar, J. The many facets of adenine: coordination, crystal patterns, and catalysis. Accounts of chemical research 2010, 43 (1), 79-91.
182. Zhang, M.; Gu, Z.-Y.; Bosch, M.; Perry, Z.; Zhou, H.-C. Biomimicry in metal–organic materials. Coordination Chemistry Reviews 2015, 293, 327-356.
183. Selfridge, A. C.; Cavadas, M. A.; Scholz, C. C.; Campbell, E. L.; Welch, L. C.; Lecuona, E.; Colgan, S. P.; Barrett, K. E.; Sporn, P. H.; Sznajder, J. I. Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. Journal of Biological Chemistry 2016, 291 (22), 11800-11808.
184. Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. Surface-enhanced hyper-Raman scattering elucidates the two-photon absorption spectrum of rhodamine 6G. The Journal of Physical Chemistry C 2013, 117 (6), 3046-3054.
185. Gong, Y.-J.; Zhang, X.-B.; Mao, G.-J.; Su, L.; Meng, H.-M.; Tan, W.; Feng, S.; Zhang, G. A unique approach toward near-infrared fluorescent probes for bioimaging with remarkably enhanced contrast. Chemical science 2016, 7 (3), 2275-2285.
186. Bhattarai, N.; Chen, M.; Pérez, R. L.; Ravula, S.; Chhotaray, P.; Hamdan, S.; McDonough, K.; Tiwari, S.; Warner, I. M. Enhanced chemotherapeutic toxicity of cyclodextrin templated size-tunable rhodamine 6G nanoGUMBOS. Journal of Materials Chemistry B 2018, 6 (34), 5451-5459.
187. Lin, C.; Mahloudji, A.; Li, L.; Hsiao, M. Molecular aggregation of rhodamine 6G probed by optical and electrochemical techniques. Chemical physics letters 1992, 193 (1-3), 8-16.
188. Abebe Alemayehu, Y.; Tewabe Gebeyehu, B.; Cheng, C.-C. Photosensitive supramolecular micelles with complementary hydrogen bonding motifs to improve the efficacy of cancer chemotherapy. Biomacromolecules 2019, 20 (12), 4535-4545.
189. Kubin, R. F.; Fletcher, A. N. Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence 1982, 27 (4), 455-462.
190. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews 2008, 37 (8), 1465-1472.
191. Muhabie, A. A.; Cheng, C.-C.; Huang, J.-J.; Liao, Z.-S.; Huang, S.-Y.; Chiu, C.-W.; Lee, D.-J. Non-covalently functionalized boron nitride mediated by a highly self-assembled supramolecular polymer. Chemistry of Materials 2017, 29 (19), 8513-8520.
192. Turecček, F.; Chen, X. Protonated adenine: Tautomers, solvated clusters, and dissociation mechanisms. Journal of the American Society for Mass Spectrometry 2005, 16 (10), 1713-1726.
193. Lee, D.; Swamy, K.; Hong, J.; Lee, S.; Yoon, J. A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells. Sensors and Actuators B: Chemical 2018, 266, 416-421.
194. Byun, J.; Huang, W.; Wang, D.; Li, R.; Zhang, K. A. CO2‐Triggered switchable hydrophilicity of a heterogeneous conjugated polymer photocatalyst for enhanced catalytic activity in water. Angewandte Chemie International Edition 2018, 57 (11), 2967-2971.
195. Cheng, C.-C.; Lai, Y.-C.; Shieh, Y.-T.; Chang, Y.-H.; Lee, A.-W.; Chen, J.-K.; Lee, D.-J.; Lai, J.-Y. CO2-responsive water-soluble conjugated polymers for in vitro and in vivo biological imaging. Biomacromolecules 2020, 21 (12), 5282-5291.
196. Bojinov, V. B.; Venkova, A. I.; Georgiev, N. I. Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1, 8-naphthalimide. Sensors and Actuators B: Chemical 2009, 143 (1), 42-49.
197. Chabannes, M.; Bordereau, P.; Martins, P. V.; Dragon-Durey, M.-A. Sheep erythrocyte preparation for hemolytic tests exploring complement functional activities. The Complement System: Innovative Diagnostic and Research Protocols 2021, 61-67.
198. Barcellini, W.; Fattizzo, B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Disease markers 2015, 2015.
199. Zhao, X.; Lu, D.; Liu, Q. S.; Li, Y.; Feng, R.; Hao, F.; Qu, G.; Zhou, Q.; Jiang, G. Hematological effects of gold nanorods on erythrocytes: hemolysis and hemoglobin conformational and functional changes. Advanced Science 2017, 4 (12), 1700296.
200. Wang, C.; Zhao, T.; Li, Y.; Huang, G.; White, M. A.; Gao, J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Advanced drug delivery reviews 2017, 113, 87-96.
201. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie 2003, 115 (38), 4788-4791.
202. Anand, U.; Dey, A.; Chandel, A. K. S.; Sanyal, R.; Mishra, A.; Pandey, D. K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases 2022.
203. Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: a double-edged sword in cancer treatment. Cancer immunology, immunotherapy 2022, 71 (3), 507-526.
204. Oun, R.; Moussa, Y. E.; Wheate, N. J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton transactions 2018, 47 (19), 6645-6653.
205. Yadav, A.; Singh, S.; Sohi, H.; Dang, S. Advances in delivery of chemotherapeutic agents for cancer treatment. AAPS PharmSciTech 2022, 23, 1-14.
206. Patil, S. A.; Patil, R.; Pfeffer, L. M.; Miller, D. D. Chromenes: potential new chemotherapeutic agents for cancer. Future medicinal chemistry 2013, 5 (14), 1647-1660.
207. Oliveri, V. Selective targeting of cancer cells by copper ionophores: an overview. Frontiers in molecular biosciences 2022, 9, 841814.
208. Shadidi, M.; Sioud, M. Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates 2003, 6 (6), 363-371.
209. Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K. K.; Kamal, M. A.; Garg, N.; Ruokolainen, J.; Das, B. C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. In Seminars in cancer biology, 2021; Elsevier: Vol. 69, pp 166-177.
210. Ma, X.; Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Accounts of Chemical Research 2014, 47 (7), 1971-1981.
211. Mrinalini, M.; Prasanthkumar, S. Recent advances on stimuli‐responsive smart materials and their applications. ChemPlusChem 2019, 84 (8), 1103-1121.
212. Bami, M. S.; Estabragh, M. A. R.; Khazaeli, P.; Ohadi, M.; Dehghannoudeh, G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2022, 70, 102987.
213. Shaibie, N. A.; Ramli, N. A.; Mohammad Faizal, N. D. F.; Srichana, T.; Mohd Amin, M. C. I. Poly (N‐isopropylacrylamide)‐Based Polymers: Recent Overview for the Development of Temperature‐Responsive Drug Delivery and Biomedical Applications. Macromolecular Chemistry and Physics 2023, 224 (20), 2300157.
214. Mollazadeh, S.; Mackiewicz, M.; Yazdimamaghani, M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Materials Science and Engineering: C 2021, 118, 111536.
215. Webber, M. J.; Anderson, D. G. Smart approaches to glucose-responsive drug delivery. Journal of Drug targeting 2015, 23 (7-8), 651-655.
216. Pokharel, M.; Park, K. Light mediated drug delivery systems: A review. Journal of Drug Targeting 2022, 30 (4), 368-380.
217. Kapalatiya, H.; Madav, Y.; Tambe, V. S.; Wairkar, S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug delivery and translational research 2022, 1-13.
218. Wei, P.; Cornel, E. J.; Du, J. Ultrasound-responsive polymer-based drug delivery systems. Drug delivery and translational research 2021, 11, 1323-1339.
219. Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2019, 11 (1), e1527.
220. Khan, M. I.; Hossain, M. I.; Hossain, M. K.; Rubel, M.; Hossain, K.; Mahfuz, A.; Anik, M. I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Applied Bio Materials 2022, 5 (3), 971-1012.
221. Hossen, S.; Hossain, M. K.; Basher, M.; Mia, M.; Rahman, M.; Uddin, M. J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research 2019, 15, 1-18.
222. Yang, Z.; He, C.; Sui, H.; He, L.; Li, X. Recent advances of CO2-responsive materials in separations. Journal of CO2 Utilization 2019, 30, 79-99.
223. Nevler, A.; Brown, S. Z.; Nauheim, D.; Portocarrero, C.; Rodeck, U.; Bassig, J.; Schultz, C. W.; McCarthy, G. A.; Lavu, H.; Yeo, T. P. Effect of hypercapnia, an element of obstructive respiratory disorder, on pancreatic cancer chemoresistance and progression. Journal of the American College of Surgeons 2020, 230 (4), 659-667.
224. Bayle, E. A.; Ilhami, F. B.; Huang, S.-Y.; Su, T.-H.; Shieh, Y.-T.; Chen, J.-K.; Cheng, C.-C. Development of CO2-responsive supramolecular drug carrier system for potential application in anticancer treatment. Applied Materials Today 2023, 33, 101865.
225. Fahmy, S. A.; Brüßler, J.; Alawak, M.; El-Sayed, M. M.; Bakowsky, U.; Shoeib, T. Chemotherapy based on supramolecular chemistry: A promising strategy in cancer therapy. Pharmaceutics 2019, 11 (6), 292.
226. Perumalla, S. R.; Pedireddi, V. R.; Sun, C. C. Protonation of cytosine: cytosinium vs hemicytosinium duplexes. Crystal growth & design 2013, 13 (2), 429-432.
227. Swanson, W. B.; Durdan, M.; Eberle, M.; Woodbury, S.; Mauser, A.; Gregory, J.; Zhang, B.; Niemann, D.; Herremans, J.; Ma, P. X. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile in vivo and in vitro applications. RSC Chemical Biology 2022, 3 (6), 748-764.
228. Liu, L.; Guo, P.; Chai, L.; Shi, Q.; Xu, B.; Yuan, J.; Wang, X.; Shi, X.; Zhang, W. Fluorescent and colorimetric detection of pH by a rhodamine-based probe. Sensors and Actuators B: Chemical 2014, 194, 498-502.
229. Mu, Y.; Gong, L.; Peng, T.; Yao, J.; Lin, Z. Advances in pH-responsive drug delivery systems. OpenNano 2021, 5, 100031.
230. Jansen-van Vuuren, R. D.; Naficy, S.; Ramezani, M.; Cunningham, M.; Jessop, P. CO2-responsive gels. Chemical Society Reviews 2023.
231. Huang, S.-Y. Multifunctional silver-containing metallo-supramolecular polymers for high-efficiency anticancer, antibacterial and antiviral therapies Unpublished NTUST, 2023.
232. Cheng, C.-C.; Wang, J.-H.; Chuang, W.-T.; Liao, Z.-S.; Huang, J.-J.; Huang, S.-Y.; Fan, W.-L.; Lee, D.-J. Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry 2017, 8 (21), 3294-3299.
233. Brochu, S.; Ampleman, G. Synthesis and characterization of glycidyl azide polymers using isotactic and chiral poly (epichlorohydrin) s. Macromolecules 1996, 29 (17), 5539-5545.
234. Li, Y.; Yang, L. Driving forces for drug loading in drug carriers. Journal of Microencapsulation 2015, 32 (3), 255-272.
235. Thien Ngan, V. T.; Ilhami, F. B.; Huang, S.-Y.; Su, T.-H.; Tsai, H.-H.; Cheng, C.-C. CO2-Responsive drug delivery system created by supramolecular design and assembly for safer, more effective cancer therapy. Materials Today Advances 2023, 19, 100400.
236. Cheng, R.; Meng, F.; Deng, C.; Klok, H. A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34 (14), 3647-3657. DOI: 10.1016/j.biomaterials.2013.01.084.
237. Wei, T.; Liu, J.; Ma, H.; Cheng, Q.; Huang, Y.; Zhao, J.; Huo, S.; Xue, X.; Liang, Z.; Liang, X. J. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett 2013, 13 (6), 2528-2534.
238. Van Engeland, M. N., L.J.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998, 31, 1–9.
239. Vermes I, H. C., Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995, 184(1):39-51.
240. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine 2012, 7 (null), 5577-5591.

無法下載圖示 全文公開日期 2029/08/05 (校內網路)
全文公開日期 2044/08/05 (校外網路)
全文公開日期 2044/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE