簡易檢索 / 詳目顯示

研究生: 巴偉地
NUR VIDIA LAKSMI B.
論文名稱: 同步磁阻電動機驅動系統的模型預測控制器設計及製作
Design and Implementation of Model-Based Predictive Controllers for Synchronous Reluctance Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 126
中文關鍵詞: 同步磁阻電動機模型預測控制器成本函數最小化
外文關鍵詞: synchronous reluctance motor, model-based predictive controllers, cost function minimization
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

同步磁阻電動機已逐漸引起人們很大的注意,主要是因它具有簡單的構造,良好的強健性,及不需要永久磁鐵。本文探討以模式為基礎的預測速度及電流控制器應用在同步磁阻電動機的系統化設計。此種模式為基礎的預測控制器需要電動機的相關參數,如電阻、電感與反電勢。雖然電器參數在每個取樣區間都會變化,但由於增廣模型的狀態變數與拘束條件讓本文所提出的控制器具有良好的適應性,此種控制器能改善驅動系統的動態響應,包括:暫態響應、加載響應及追蹤響應。此外,一個成本函數最佳化被用來決定每個抽樣周期的切換狀態。
為了展示其響應特性,一部三相、560瓦的同步磁阻電動機驅動系統被研製成功,並可提供2 r/min到1800 r/min 的寬廣控速範圍。一部32 位元,浮點運算,型號TMS-320-F-28335的數位信號處理器被用來執行相關的控制法則,因此硬體電路相當簡單。實測結果說明本文所提的模型預測控制器具有優於比例-積分控制器的性能,且比例-積分控制器的參數由極點安置技術來決定。


Synchronous Reluctance Motor (SynRM) has drawn great attention due to its simple structure, good robustness, and no permanent magnet material. This thesis proposes a systematic design and implementation of a model-based predictive speed controller and current controller for SynRM drive systems. The model-based predictive controllers require motor parameters such as resistance, inductance, and back EMF. Although the parameters are varying every sampling interval, the proposed controllers can adapt well due to the augmented state variables and constraints. As a result, the proposed controllers improve dynamic responses of the drive system, including transient responses, load disturbance responses, and tracking responses. In addition, a minimized cost function is used to determine the switching states of each sampling interval.
To demonstrate the performance, a three-phase, 560 W SynRM drive system is implemented to provide a wide adjustable speed range, from 2 r/min to 1800 r/min. A 32-bit floating-point TMS-320-F-28335 DSP is used to execute the control algorithms. As a result, the hardware is very simple. Experimental results show that the model-based predictive controllers have better performance than the PI controller. The parameters of the PI controller are determined by pole assignment technique.

ABSTRACT iii 中文摘要 iv DEDICATION v ACKNOWLEDGEMENTS vi NOMENCLATURE vii TABLE OF CONTENTS xi LIST OF FIGURES xiii LIST OF TABLES xvi CHAPTER I INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Organization 6 CHAPTER II SYNCHRONOUS RELUCTANCE MOTOR 7 2.1 Introduction 7 2.2 Classification of SynRM 10 2.2.1 Axially-Laminated Rotor 10 2.2.2 Transverse-Laminated Rotor 12 2.3 Mathematical Model of SynRM 14 CHAPTER III INVERTER 19 3.1 Introduction 19 3.2 Structure of IGBTs 20 3.3 Switching States of Inverters 22 CHAPTER IV MODEL-BASED PREDICTIVE CURRENT CONTROLLER 27 4.1 Introduction 27 4.2 Model-Based Predictive Current Controller Design 28 CHAPTER V MODEL-BASED PREDICTIVE SPEED CONTROLLER 34 5.1 Introduction 34 5.2 Model-Based Predictive Speed Controller Design 35 5.2.1 Discrete Model of SynRM 35 5.2.2 Augmented Model of SynRM Control System 39 5.2.3 Laguerre Function 42 5.2.4 Constraint Consideration 47 CHAPTER VI IMPLEMENTATION 53 6.1 SynRM Drive System 53 6.2 Hardware Circuit 54 6.2.1 Three-phase VSI 54 6.2.2 Current Sensing Circuit 56 6.2.3 Voltage Sensing Circuit 58 6.2.4 Reshaping Circuit of Encoder 60 6.2.5 Interface Circuit 60 6.3 Digital Signal Processor 61 6.4 Software Program Flowchart 63 6.4.1 Main Program 64 6.4.2 Interrupt Service Routine Program 65 CHAPTER VII EXPERIMENTAL RESULTS 69 7.1 Introduction 69 7.2 Experimental Results 71 CHAPTER VIII CONCLUSIONS 97 8.1 Conclusions 97 8.2 Suggestions for Future Research 97 REFERENCES 99 BIOGRAPHY 107

[1] H. Falkner and S.Holt, “Walking the torque,” International Energy Agency, Paris, 2011.
[2] M. C. Di Piazza and M. Pucci, "A comprehensive dynamic model for accurate power efficiency analysis in induction motor drives," IEEE ISIE-2017, pp. 195-201.
[3] A. Ulatowski, Y. Liu, and A. M. Bazzi, "Behavioral comprehensive efficiency modeling of motor drive systems based on physical measurements," IEEE ECCE-2015, pp. 4894-4898.
[4] P. Waide and C. U. Brunner, “Energy-efficiency policy opportunities for electric motor-driven systems,” International Energy Agency, Paris, 2011.
[5] B. Kerdsup and S. Kreuawan, "Design of synchronous reluctance motors with IE4 energy efficiency standard competitive to BLDC motors used for blowers in air conditioners," IEEE IEMDC-2017, pp. 1-6.
[6] M. J. Kamper. "Reluctance synchronous machine drives - a viable alternative?," IEEE Joint IAS/PELS/IES Chapter Meeting, Graz, 2013.
[7] V. Manzolini, D. Da Rù, and S. Bolognani, "A new control strategy for high efficiency wide speed range synchronous reluctance motor drives," IEEE IEMDC-2017, pp. 1-7.
[8] J. A. Santos et al., "Simulation and experimental verification of a cageless synchronous reluctance motor," IEEE IEMDC-2017, pp. 1-6.
[9] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, Wiley, United Kingdom, 2012.
[10] J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New York 2002.
[11] G. C Goodwin, M. M seron, and J. A. D. Dona, Constrained Control and Estimation – An Optimization Perspective. Springer Verlag, 2005.
[12] C. Mudannayake, J. Ryan, A. Kuroiwa, and T. Kuninaga, "Upgrade of 4.9MW high speed helper motor drive system of LNG hydrocarbon gas compressor train; a comparison of voltage source inverter and load commutated inverter topologies," IEEE ECCE Asia-2013, pp. 104-110.
[13] C. Onambele, A. Mpanda, M. Elsied, and F. Giacchetti, "Highly efficient drive system based on SiC MOSFETs for high power electric transportation," IEEE CPE POWERENG-2017, pp. 229-234.
[14] J. Heikkinen, T. Minav, and A. D. Stotckaia, "Self-tuning parameter fuzzy PID controller for autonomous differential drive mobile robot," IEEE SCM-2017, pp. 382-385.
[15] H. A. Hussain, B. Anvari, and H. A. Toliyat, "A control method for linear permanent magnet electric submersible pumps in a modified integrated drive-motor system," IEEE IEMDC-2017, pp. 1-7.
[16] H. Hadla and S. Cruz, "Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range," IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6950-6959, Sep. 2017.
[17] A. Yousefi-talouki and G. Pellegrino, "Vector control of matrix converter-fed synchronous reluctance motor based on flux observer," IEEE WEMDCD-2015, pp. 210-215.
[18] E.F. Camacho and C. Bordons, Model Predictive Control, Springer-Verlag, London, 2007.
[19] S. Effler, A. Kelly, M. Halton, and K. Rinne, "Automated optimization of generalized model predictive control for DC-DC converters," IEEE PESC-2008, pp. 134-139.
[20] S. S. Lee, Y. E. Heng, and M. A. Roslan, "Finite control set model predictive control of nine-switch AC/DC/AC converter," IEEE PECON-2016, pp. 746-751.
[21] M. Leuer, A. Rüting, and J. Böcker, "Efficiency-optimized model predictive torque control for IPMSM," IEEE ENERGYCON-2014, pp. 9-13.
[22] M. Niliyan, M. Mohamadian, and A. Y. Varjani, "One step model predictive control of five level ANPC permanent magnet motor drive," IEEE PEDSTC-2016, pp. 620-625.
[23] P. A. Egiguren, O. B. Caramazana, A. J. Garrido Hernandez, and I. Garrido Hernandez, "SVPWM linear generalized predictive control of induction motor drives," IEEE ISIE-2008, pp. 588-593.
[24] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, "Predictive control in power electronics and drives," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
[25] G. A. Capolino, "Recent advances and applications of power electronics and motor drives - Advanced and intelligent control techniques," IEEE IECON-2008, pp. 37-39.
[26] Y. Zhang, D. Xu, J. Liu, S. Gao, and W. Xu, "Performance improvement of model-predictive current control of permanent magnet synchronous motor drives," IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3683-3695, July/Aug. 2017.
[27] L. I. Minchala-Avila, K. Palacio-Baus, J. P. Ortiz, J. D. Valladolid, and J. Ortega, "Comparison of the performance and energy consumption index of model-based controllers," IEEE ETCM-2016, pp. 1-6.
[28] A. D. Alexandrou and A. G. Kladas, "High temperature direct speed regulation technique for a vector controlled permanent magnet motor drive based on predictive control method," IEEE ICEM-2016, pp. 1057-1063.
[29] N. Jabbour, E. Tsioumas, N. Karakasis, and C. Mademlis, "Discrete-time model predictive control for high performance speed control in an induction motor drive," IEEE IECON-2016, pp. 2766-2771.
[30] M. S. Rana, H. R. Pota, and I. R. Petersen, "MPC in high-speed atomic force microscopy," IEEE AUCC-2016, pp. 135-140.
[31] H. B. Novin and H. Ghadiri, "Particle swarm optimization base explicit model predictive controller for limiting shaft torque," IEEE CFIS-2017, pp. 35-40.
[32] B. Codres, M. Gaiceanu, R. Solea, and C. Eni, "Model predictive speed control of permanent magnet synchronous motor," IEEE OPTIM-2014, pp. 477-482.
[33] S. C. Carpiuc and C. Lazar, "Energy-efficient model predictive speed control of permanent magnet synchronous machine based automotive traction drives," IEEE VPPC-2014, pp. 1-6.
[34] T. Tarczewski and L. M. Grzesiak, "Constrained state feedback speed control of PMSM based on model predictive approach," IEEE Trans Ind. Electron., vol. 63, no. 6, pp. 3867-3875, June 2016.
[35] A. A. Zaki Diab, D. A. Kotin, V. N. Anosov, and V. V. Pankratov, "A comparative study of speed control based on MPC and PI-controller for Indirect Field oriented control of induction motor drive," IEEE APEIE-2014, pp. 728-732.
[36] S. Thomsen, N. Hoffmann, and F. W. Fuchs, "PI control, PI-based state space control, and model-based predictive control for drive systems with elastically coupled loads—a comparative study," IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3647-3657, Aug. 2011.
[37] P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, "Direct power control of an AFE using predictive control," IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516-2523, Sep. 2008.
[38] G. Hunter, R. Pena, I. Andrade, J. Riedemann, and R. Blasco-Gimenez, "Power control of an AFE rectifier during unbalanced grid voltage using predictive current control," IEEE ISIE-2015, pp. 385-390.
[39] J. D. Barros, J. F. A. Silva, and E. G. A. Jesus, "Fast-predictive optimal control of NPC multilevel converters," IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 619-627, Feb. 2013.
[40] V. Yaramasu, M. Rivera, B. Wu, and J. Rodriguez, "Model predictive current control of two-level four-leg inverters—part I: concept, algorithm, and simulation analysis," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3459-3468, July 2013.
[41] J. Rodriguez, J. Pontt, P. Cortes, and R. Vargas, "Predictive control of a three-phase neutral point clamped inverter," IEEE PESCON-2005, pp. 1364-1369.
[42] J. L. Elizondo et al., "Model-based predictive rotor current control for grid synchronization of a DFIG driven by an indirect matrix converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 715-726, Dec. 2014.
[43] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, "Design and implementation of model predictive control for electrical motor drives," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1925-1936, June 2009.
[44] S. Y. Park and S. Kwak, "Comparative study of three model predictive current control methods with two vectors for three-phase DC/AC VSIs," IET Electric Power Applications, vol. 11, no. 7, pp. 1284-1297, 2017.
[45] X. H. Jin, Y. Zhang, and D. G. Xu, "Static current error elimination algorithm for induction motor predictive current control," IEEE Access, vol. 5, pp. 15250-15259, 2017.
[46] C. K. Lin, J. T. Yu, L. C. Fu, T. H. Liu, and C. F. Hsiao, "Model-based predictive current control for four-switch three-phase inverter-fed IPMSM with an adaptive backstepping complementary PI sliding-mode position controller," 2012 IEEE/ASME AIM-2012, pp. 1042-1047.
[47] A. M. Bozorgi, M. Farasat, and S. Jafarishiadeh, "Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple," IET Power Electronics, vol. 10, no. 10, pp. 1120-1128, 8 18 2017.
[48] J. Saha, A. Ayad, and R. Kennel, "Direct model predictive current control for matrix converters," IEEE ICNTE-2017, pp. 1-5.
[49] N. Kutasi, A. Kelemen, and M. Imecs, "Vector control of induction motor drives with model based predictive current controller," IEEE ICCC-2018, pp. 21-26.
[50] K. G. R. Ahallianath and M. W. Beevi, "Indirect field oriented control of induction motor using predictive current controller," IEEE ICCC-2015, pp. 248-253.
[51] C. Xue, W. Song, and X. Feng, "Finite control-set model predictive current control of five-phase permanent-magnet synchronous machine based on virtual voltage vectors," IET Electric Power Applications, vol. 11, no. 5, pp. 836-846, 5 2017.
[52] Y. Mei, Z. Yi, and Z. Li, "A two-step model predictive control strategy for dual induction motor drive system fed by five-leg inverter," IEEE ICEMS-2015, pp. 137-142.
[53] C. K. Lin, L. C. Fu, T. H. Liu, and C. F. Hsiao, "Passivity-based adaptive complementary PI sliding-mode speed controller for synchronous reluctance motor using predictive current control," IEEE ACC-2012, pp. 1168-1173.
[54] T. H. Liu, H. S. Haslim, and S. K. Tseng, "Predictive speed-loop controller design for a synchronous reluctance drive system," IEEE ISFEE-2016, pp. 1-6.
[55] J. H. Lee and B. I. Kwon, "Optimal rotor shape design of a concentrated flux IPM-type notor for improving efficiency and operation range," IEEE Trans. Magn., vol. 49, no. 5, pp. 2205-2208, May 2013.
[56] C. Oprea, A. Dziechciarz, and C. Martis, "Comparative analysis of different synchronous reluctance motor topologies," IEEE EEEIC-2015, pp. 1904-1909.
[57] N. Bianchi and B. J. Chalmers, "Axially laminated reluctance motor: analytical and finite-element methods for magnetic analysis," IEEE Trans. Magn., vol. 38, no. 1, pp. 239-245, Jan. 2002.
[58] A. A. Arkadan, N. Al-Aawar, and A. A. Hanbali, "Design optimization of SynRM drives for HEV power train applications," IEEE IEMDC-2007, pp. 810-814.
[59] A. A. Arkadan, M. N. Elbsat, and M. A. Mneimneh, "Particle swarm design optimization of ALA rotor SynRM for traction applications," IEEE Trans. Magn., vol. 45, no. 3, pp. 956-959, Mar. 2009.
[60] Y. H. Kim, J. H. Lee, and J. K. Lee, "Optimum design of axially laminated anisotropic rotor Synchronous Reluctance Motor for torque density and ripple improvement," IET CEM-2014, pp. 1-2.
[61] E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, "Position-sensorless control of the transverse-laminated synchronous reluctance motor," IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001
[62] P. Hudak, V. Hrabovcova, and P. Rafajdus, "Geometrical dimension influence of multi-barrier rotor on reluctance synchronous motor performances," IEEE SPEEDAM-2006, pp. 346-351.
[63] X. B. Bomela and M. J. Kamper, "Effect of stator chording and rotor skewing on performance of reluctance synchronous machine," IEEE Trans. Ind. Appl., vol. 38, no. 1, pp. 91-100, Jan./Feb. 2002.
[64] C. K. Lin, J. T. Yu, Y. S. Lai, and H. C. Yu, "Improved model-free predictive current control for synchronous reluctance motor drives," IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3942-3953, June 2016.
[65] P. Cortes, J. Rodriguez, D. E. Quevedo, and C. Silva, "Predictive current control strategy with imposed load current spectrum," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 612-618, Mar. 2008.
[66] R. Soeterboek, Predictive control a unified approach, Prentice Hall, New York, 1992.
[67] Liuping Wang, Model Predictive Control System Design and Implementation Using Matlab, Springer- Verlag, London, 2009.
[68] Mitsubishi Electric, PS21265-P/AP Datasheet, 2005.
[69] Spectrum Digital, eZdspTM F28335 Technical Reference, 2007.
[70] Texas Instruments, TMS320X2833X System Control and Interrupts Reference Guide, 2007.

QR CODE