簡易檢索 / 詳目顯示

研究生: 陳禾翊
Ho-Yi Chen
論文名稱: 模糊田口法應用於同步磁阻馬達開發與設計
Apply Fuzzy Taguchi Method to Develop and Design a Synchronous Reluctance Motor
指導教授: 辜志承
Jyh-Cherng Gu
蕭鈞毓
Chun-Yu Hsiao
口試委員: 辜志承
Jyh-Cherng Gu
洪聯馨
Lain-Shing Hung
蕭鈞毓
Chun-Yu Hsiao
蕭弘清
Horng-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 151
中文關鍵詞: 磁阻馬達田口法信號雜訊比模糊推論多重品質特性衡量指標
外文關鍵詞: reluctance motor, Taguchi method, signal-to-noise ratio, fuzzy inference, multiple performance characteristics index
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著節能及環保意識提高,用電量佔所有電氣負載首位的電動機(馬達)具絕對節能潛力,高效率馬達在工業現代化的各產業中成為節能對策的首選。磁阻馬達具有結構簡單、機械強度高、生產成本低等優點,其應用範圍廣,在可變調速應用中可取代感應馬達及永磁馬達。然而,相較於感應馬達與永磁馬達,磁阻馬達轉矩漣波大、功率因數低,以致大幅降低磁阻馬達性能及應用。
    本文使用有限元素分析軟體ANSYS Maxwell探討30 kW同步磁阻馬達的分析與設計,針對轉子結構進行優化,以改善轉矩漣波及功率因數為目標,並將田口法應用於馬達設計中,經由各實驗因子水準組合,計算各品質特性之信號雜訊比,透過變異數分析評估各因子對目標反應之影響程度,以提升磁阻馬達性能。
    本研究加入模糊推論解決多目標問題,使參數達到優化,利用灰關聯分析將信號雜訊比轉換成灰關聯係數,經由模糊推論系統求得多重品質特性衡量指標,並決定磁阻馬達最佳參數組合,以驗證馬達設計之正確性。最後將磁阻馬達最佳化分析與設計成果,製作實體馬達成品並進行實測,探討與比較模擬與實測間誤差,以提高模擬及設計方法之準確性,供作為未來磁阻馬達設計參考。


    With the increasing awareness of energy conservation and environmental protection, electric motors (motors), which consume the most power in all electrical loads, have absolute energy-saving potential. High-efficiency motors have become the first choice for energy-saving measures in various industries in industrial modernization. Reluctance motor has the advantages of simple structure, high mechanical strength, low production cost, etc. It has a wide range of applications and can replace induction motors and permanent magnet motors in variable speed applications. However, compared with induction motors and permanent magnet motors, reluctance motors have large torque ripple and low power factor, which greatly reduces the performance and applications of reluctance motors.
    This thesis uses the finite element analysis software ANSYS Maxwell to analyze and design a 30 kW synchronous reluctance motor, optimizes the rotor structure to improve torque ripple and power factor, and applies Taguchi’s method to motor design. Combination of experimental factor levels, calculate the signal-to-noise ratio of each quality characteristic, and evaluate the influence of each factor on the target response through variance analysis to improve the performance of the reluctance motor.
    In this study, fuzzy inference is added to solve the multi-objective problem and the parameters are optimized. The signal-to-noise ratio is converted into grey relational coefficient using grey relational analysis, and the multiple performance characteristics index is obtained through the fuzzy inference system, and the best parameters of the reluctance motor are determined, which verified the correctness of the motor design. Finally, the optimization analysis and design results of the reluctance motor are executed and implemented, and the practical product of the physical motor is produced and measured in machine factory. The error and deviation from measurement compared with simulations were studied in order to improve the accuracy of the simulation and design methodologies, as a reference for future design of reluctance motor.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XIII 符號索引 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 馬達國際市場概況 3 1.4 本文大綱 6 第二章 馬達原理分析 7 2.1 前言 7 2.2 各類馬達分析 7 2.3 磁阻馬達分析 9 2.4 同步磁阻馬達電磁轉矩、功率因數及直交軸電感 12 2.5 結語 14 第三章 30 kW磁阻馬達分析與設計 15 3.1 前言 15 3.2 磁阻馬達選型比較 15 3.3 磁阻馬達參考機規格 17 3.4 磁阻馬達之有限元素分析 18 3.5 影響磁阻馬達特性的參數 20 3.6 結語 95 第四章 磁阻馬達之最佳化設計與分析 96 4.1 前言 96 4.2 田口方法最佳化設計 97 4.3 灰關聯分析 105 4.4 建立模糊推論系統 108 4.5 有限元素分析與磁阻馬達幾何結構 114 4.6 結語 118 第五章 模擬與實測結果 119 5.1 前言 119 5.2 磁阻馬達無載試驗 119 5.3 各負載下之磁阻馬達特性比較 120 5.4 磁阻馬達模擬與實測結果比較 122 5.5 結語 124 第六章 結論與未來研究建議 125 6.1 結論 125 6.2 未來研究建議 126 參考文獻 127 附錄A 131 附錄B 132

    [1]https://www.taipower.com.tw/upload/147/2019050609291551635.pdf,能源技術服務,台灣電力公司,2019年5月。
    [2]Accelerating the global adoption of energy-efficient electric motors and motor systems, U4E Policy Guide Series-Electric Motors and Motor systems, UN Environment, 2017.
    [3]陳致融,全球馬達市場規模分析,ITIS智網,2019年8月。
    [4]A. T. de Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond induction motors—technology trends to move up efficiency,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2103-2114, 2014.
    [5]R. Ni et al., “Efficiency enhancement of general ac drive system by remanufacturing induction motor with interior permanent-magnet rotor,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 808-820, 2016.
    [6]F. J. T. E. Ferreira, B. Leprettre, and A. T. de Almeida, “Comparison of protection requirements in ie2-, ie3-, and ie4-class motors,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3603-3610, 2016.
    [7]https://www.ctmotor.com.tw/images/upfiles/manual/TW_20170713042708.pdf,群策電機工業股份有限公司。
    [8]H. Liu and J. Lee, “Optimum design of an ie4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3104-3114, 2018.
    [9]Estima, Jorge and Cardoso, A.J.M., “Super premium synchronous reluctance motor evaluation,” 8th International Conference on Energy Efficiency in Motor Driven Systems, 2013.
    [10]A+B International: Global motor energy data base, unpublished, Zurich Switzerland, 2013.
    [11]Stephen J. Chapman, “Electric machinery fundamentals,” 5th edition.
    [12]子敬,電機機械精釋,超級科技圖書股份有限公司,2015年5月。
    [13]https://eatontseng.pixnet.net/blog/post/102290242,馬達,2013年12月。
    [14]李淵全,電機機械,全威圖書有限公司,2001年7月。
    [15]https://www.cp-mg.com/27704309132151627493386512120527231245902717129986299832120521147.html,澄柏國際股份有限公司。
    [16]http://www.sphs.hc.edu.tw/,三相感應電動機的原理、構造及分類。
    [17]https://www.transwell-int.com.tw/product/21/102/96,群崴國際股份有限公司。
    [18]胡阿火,電機機械,全華圖書股份有限公司,2007年11月。
    [19]張志耿,新型同步磁阻電機的設計及運行特性分析,福州大學碩士論文,2016年。
    [20]Reza Rajabi Moghaddam, “Synchronous reluctance machine design,” KTH Royal Institute of Technology, Stockholm, Master Thesis, 2007.
    [21]李業文,使用多率濾波器脈波寬度調變於切換式磁阻馬達控制,國立交通大學電控工程研究所碩士論文,2013年7月。
    [22]簡劭全,適應性智慧型控制器於切換式磁阻馬達驅動系統之設計,國立臺北科技大學電機工程系博士論文,2013年6月。
    [23]Y. Hu, B. Chen, Y. Xiao, J. Shi, L. Li and X. Li, “Rotor design and optimization of the three-phase line-start synchronous reluctance motor,” 22nd International Conference on Electrical Machines and Systems, pp. 1-6, 2019.
    [24]https://zi.media/@yidianzixun/post/WavhcN,新能源汽車驅動電機深度分析,2017年5月。
    [25]Aswin Uvaraj Ganesan, Lenin Natesan Chokkalingam, “Self-start synchronous reluctance motor new rotor designs and its performance characteristics,” International Transactions on Electrical Energy Systems, vol. 29, no. 11, 2019.
    [26]Q. Smit, A.J. Sorgdrager and R-J. Wang, “Design and optimisation of a line-start synchronous reluctance motor,” 24th Southern African Universities Power Engineering Conference, 2016.
    [27]Azizi, Hossein, and Abolfazl Vahedi, “Rotor geometry parameter optimization of synchronous reluctance motor using Taguchi Method,” Przeglad Elektrotechniczny, pp.197-201, 2013.
    [28]G. Todorov and B. Stoev, “Parameters and torque ripple of synchronous reluctance motors with different rotor topology,” 20th International Symposium on Electrical Apparatus and Technologies, pp. 1-4, 2018.
    [29]T. Mohanarajah, J. Rizk, M. Nagrial and A. Hellany, “Optimisation of flux barrier parameters in synchronous reluctance machines,” IEEE Conference on Energy Conversion, Johor Bahru, pp. 299-304, 2015.
    [30]Panda, Sibasish, and Keshri, Ritesh, “Reduced rib synchronous reluctance motor for traction applications,” Advances in Electrical and Computer Engineering, vol. 19, pp. 83-90, 2019.
    [31]M. S. Islam, I. Husain and A. Ahmed, “Torque ripple reduction of interior permanent magnet machines using asymmetric q-axis rotor,” IEEE Transportation Electrification Conference & Expo, pp. 439-444, 2020.
    [32]J. Song, F. Dong, J. Zhao, S. Lu, S. Dou, and H. Wang, “Optimal design of permanent magnet linear synchronous motors based on Taguchi method,” IET Electric Power Applications, vol. 11, no. 1, pp. 41-48, 2017.
    [33]F. Dong, J. Song, J. Zhao, and J. Zhao, “Multi-objective design optimisation for PMSLM by fITM,” IET Electric Power Applications, vol. 12, no. 2, pp. 188-194, 2018.
    [34]李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司, 2008年1月。
    [35]許哲瑋,使用田口方法設計小容量永磁無刷直流伺服馬達,國立台灣科技大學電機工程系碩士論文,2016年7月。
    [36]張家瑞,建立台灣地區瀝青路面網級養護管理系統-以公路局中壢工務段為例,國立中央大學土木工程研究所博士論文,2001年。
    [37]張偉哲、溫坤禮、張廷政,灰關聯模型方法與應用,高立圖書有限公司,2000年。
    [38]盧昆宏、江季哲,模糊田口法於多重品質特性製程上之研究—以TFT金屬鍍膜製程為例,國立高雄大學亞太工商管理學系,品質學報,第17卷第1期,2010年2月。
    [39]D. Rodić, M. Gostimirović, M. Sekulić, B. Batinić and N. Laković, “Optimization of edm process using grey-fuzzy approach,” Zooming Innovation in Consumer Technologies Conference, pp. 307-312, 2020.
    [40]S. Raghuraman, K. Thiruppathi, T. Panneerselvam and S. Santosh, “Optimization of edm parameters using taguchi method and grey relational analysis for mild steel is 2026,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, pp. 3095-3104, 2013.
    [41]C. Hwang, C. Chang and C. Liu, “A fuzzy-based taguchi method for multiobjective design of pm motors,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2153-2156, 2013.
    [42]http://www.tatung.com.tw/Product/Motor/1045,大同股份有限公司。
    [43]A. Mlot and M. Korkosz and P. Grodzki and M. Łukaniszyn, “Analysis of the proximity and skin effects on copper loss in a stator core,” Archives of Electrical Engineering, vol. 63, pp. 211-225, 2014.
    [44]K. Senda, M. Ishida, Y. Nakasu, and M. Yagi, “Influence of shearing process on domain structure and magnetic properties of non-oriented electrical steel,” J. Magn. Magn. Mater., vol. 304, no. 2, pp. e513-e515, 2006.
    [45]許恭華,冲切製程對於馬達矽鋼片鐵損性質影響之研究,國立高雄第一科技大學機械與自動化工程系碩士論文,2017年7月。
    [46]https://lutron1980.pixnet.net/blog/post/171990297,馬達矽鋼片使用注意事項,2014年1月。
    [47]https://www.propii.com.tw/uploadfiles/538/專業新知/06.pdf,佳準科技股份有限公司。

    無法下載圖示 全文公開日期 2031/10/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE