簡易檢索 / 詳目顯示

研究生: 楊承學
Cheng-Hsueh Yang
論文名稱: 含2,2'-Bipyridine側基的聚醯亞胺之合成及其在水溶液中重金屬離子去除應用之探討
Synthesis of Polyimides Containing 2,2'-Bipyridine Side Group and Their Application in the Removal of Heavy Metal Ions in Aqueous Solutions
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 陳志堅
游進陽
江騏瑞
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 聚醯亞胺吸附
外文關鍵詞: polyimide, adsorption
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文利用4,4'-oxydianiline (4,4'-ODA)和2,2'-bipyridine (BPy)為起始物合成新型二胺單體2-(2-bipyridinyl)-4,4'-oxydianiline (BPyODA(6)),再將BPyODA(6)與三種不同的商用品二酸酐以一步法合成新型聚醯亞胺系列(BPyODA系列)。BPyODA系列的聚醯胺酸固有黏度(inherent viscosity)為1.77~1.98 dL/g (0.5 g/dL, NMP, 35 ℃)。BPyODA系列的聚醯亞胺展現良好的熱穩定性,其玻璃轉移溫度介於279~331 ℃,5%熱重損失之熱裂解溫度(Td5%)介在441~522 ℃,10%熱重損失之熱裂解溫度(Td10%)介在462~554 ℃,在800 ℃時之熱殘餘重介在54~63 %。
將PI7a與PI7b進行Cu2+、Ni2+動力與等溫吸附實驗,實驗結果顯示,反應一天後,PI7a對Cu2+、Ni2+的吸附量分別為7.63及9.98 mg/g,PI7b對Cu2+、Ni2+的吸附量分別為22.24及10.56 mg/g,且PI7a與PI7b重複單元吸附Cu2+及Ni2+之效率則為PI7b較佳。動力學實驗結果,PI7a、PI7b與Cu2+之吸附行為,以擬二級動力式所模擬出的結果較佳,與Ni2+之吸附行為則以擬一級動力式所模擬出的結果較佳。等溫實驗結果,因Langmuir isotherm之R2值比Freundlich isotherm來的高,故以Langmuir isotherm較符合等溫吸附行為。添加5 mL正丙醇可使系統界面張力之能障降低、增加整體親水性,進而提升吸附容量。競爭吸附實驗中,溶液中含有兩種金屬離子的情況下,其吸附量依序:Cu2+大於Ni2+。


In this study, a new diamine monomer 2-(2-bipyridinyl)-4,4'-oxydianiline (BPyODA (6)) were synthesized by using 4,4'-oxydianiline (4,4'-ODA) and 2,2'-bipyridine (BPy) as starting materials. A series of novel polyimides (BPyODA series) were prepared from BPyODA (6) with various commercially aromatic dianhydrides by one steps method. These polyimides had inherent viscosities from 1.77 to 1.98 dL/g (0.5 g/dL, NMP, 35 ℃). They also exhibited good thermal stability, without any significant weight loss up to 400℃. These polyimides had high glass transition temperatures in the range of 279-331 ℃. The decomposition temperatures of these polyimides at 5% weight loss under nitrogen were in the range of 441-522 ℃. The decomposition temperatures of these polyimides at 10% weight loss under nitrogen were in the range of 462-554 ℃, and these residual weight percentage at 800℃ were 54-63%.
The kinetic and isotherm adsorption experiments were conducted by using PI7a and PI7b as adsorbents. The adsorption kinetics was found to follow the pseudo-second-order kinetic model(for Cu2+) and the pseudo-first-order kinetic model(for Ni2+) respectively. The equlilbrium data were best represented by Langmuir isotherm.The uptake capacities of PI7a obtained varied between 7.63 mg (for Cu2+) and 9.98 mg (for Ni2+) per one gram of polymer;The uptake capacities of PI7b obtained varied between 22.24 mg (for Cu2+) and 10.56 mg (for Ni2+) per one gram of polymer.The addition of a small amount of propanol decreases the interfacial tension of system drastically and increases the capacity of adsorption.The result of competitive adsorption test showed that Cu2+ is more dominant than Ni2+.

摘要 I Abstract II 目錄 III Figure索引 VI Scheme索引 X Table索引 XI 一、緒論 1 1.1前言 1 1.2聚醯亞胺簡介 2 1.3文獻回顧 5 1.3.1重金屬的危害 5 1.3.2處理汙染之方法 5 1.3.3吸附總論 7 1.3.3.1吸附理論 7 1.3.3.2影響吸附速率及能力的參數 8 1.3.3.3等溫吸附模式 9 1.3.3.4動力吸附模式 11 1.3.3.5熱力吸附模式 12 1.3.4螯合高分子 13 1.3.5含吡啶基團與金屬離子吸附之應用 17 1.3.6聚醯亞胺與金屬離子吸附之應用 24 1.4 4,4’-ODA為起始物合成之聚醯亞胺 26 1.5實驗動機 27 二、實驗 28 2.1實驗藥品 28 2.2實驗設備及儀器 30 2.3單體合成 31 2.4高分子之合成以及薄膜製備 36 2.5 Cu(II)儲備溶液與檢量線之配製 37 2.5.1 Cu(II)儲備溶液之配製 37 2.5.2 Cu(II)檢量線之配製 37 2.5.3 Cu(II)吸附實驗 37 2.6 Ni(II)儲備溶液與檢量線之配製 38 2.6.1 Ni(II)儲備溶液之配製 38 2.6.2 Ni(II)檢量線之配製 38 2.6.3 Ni(II)吸附實驗 39 2.7 競爭性吸附實驗 39 三、結果與討論 40 3.1單體的合成 40 3.1.1 5-bromo-2,2'-bipyridine (3)59之合成與性質表徵 41 3.1.2 2,2’-bipyridin-5-ylboronic acid (4)之合成與性質表徵 45 3.1.3 2-(2-bipyridinyl)-4,4'-dinitrodiphenylether (5)之合成與性質表徵 47 3.1.4 2-(2-bipyridinyl)-4,4'-oxydianiline (6)之合成與性質表徵 51 3.2高分子的合成與表徵 54 3.3聚醯亞胺之分子量與溶解度 57 3.4聚醯亞胺之熱性質 59 3.5聚醯亞胺對重金屬之吸附動力行為 64 3.5.1聚醯亞胺對Ni(II)之吸附動力行為模擬 64 3.5.2聚醯亞胺對Cu(II)之吸附動力行為模擬 65 3.6.1聚醯亞胺對Ni(II)之等溫吸附 68 3.6.2聚醯亞胺對Cu(II)之等溫吸附 69 3.7 PI7a與PI7b聚醯亞胺表面型態與BET分析 72 3.8 正丙醇添加量對吸附效果之吸附數據比較及討論 74 3.9 PI7a與PI7b聚醯亞胺重複單元對Ni(II)、Cu(II)之吸附數據比較及討論 76 3.10 PI7a與PI7b聚醯亞胺對Ni(II)、Cu(II)之競爭吸附 78 3.11 再生性實驗 79 四、結論 80

1.Hasegawa, M.; Horie, K. Photophysics, photochemistry, and optical properties of polyimides. Progress in Polymer Science 2001, 26 (2), 259-335.
2.Bogert, M. T.; Renshaw, R. R., 4-Amino-0-phthalic acid and some of its derivatives. Journal of the American Chemical Society 1908, 30 (7), 1135-1144.
3.Edwards, W. M.; Maxwell, R. I. Polyimides of pyromellitic acid. U.S Patents US2710853A, June 14, 1955.
4.Murray, E. W. Polyamide-acids, compositions thereof, and process for their preparation. U.S Patents US3179614A, April 20, 1965.
5.Laszlo, E. A. Process for preparing polyimides by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides. U.S Patents US3179630A, April 20, 1965.
6.Vinogradova, S. V.; Vygodskii, Y. S.; Korshak, V. V. Some features of the synthesis of polyimides by single-stage high-temperature polycyclization. Polymer Science U.S.S.R. 1970, 12 (9), 2254-2262.
7.Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 2012, 37 (7), 907-974.
8.Malinge, J.; Garapon, J.; Sillion, B. New developments in polybenzhydrolimide resins: Application in the field of heat resistant coatings, adhesives and laminates. British polymer journal 1988, 20 (5), 431-439.
9.Farrissey, W.; Andrews, P., Soluble copolyimides. U.S Patents US3787367A, January 22, 1974.
10.Critchley, J. A review of the poly(azoles). Progress in Polymer Science 1970, 2, 51-161.
11.Harris, F. W.; Hsu, S. L.-C. Synthesis and characterization of polyimide based on 3,6-diphenylpyromellitic dianhydride. High Performance Polymers 1989, 1 (1), 3-16.
12.Harris, F.; Sakaguchi, Y. Soluble aromatic polyimides derived from new phenylated diamines.(Retroactive Coverage). Polymeric Materials: Science and Engineering. 1989, 60, 187-191.
13.Vinogradova, S.; Korshak, V.; Vygodskii, Y. S.; Zaitsev, V. Polyamides based on aromatic diamines containing a phthalide or phthalimide group in the side chain. Polymer Science USSR 1967, 9 (3), 736-741.
14.Harris, F. W.; Feld, W. A.; Lanier, L. H. Soluble aromatic polyimides. The polymerization of phenylated bis(phthalic anhydrides) with diamine. Appl Polym Symp 1975, (26), 421-428.
15.Imai, Y., Synthesis of novel organic-soluble high-temperature aromatic polymers. High Performance Polymers 1995, 7 (3), 337-345.
16.Yang, C.-P.; Hsiao, S.-H.; Chen, K.-H. Organosoluble and optically transparent fluorine-containing polyimides based on 4, 4'-bis (4-amino-2-trifluoromethylphenoxy)-3, 3', 5, 5'-tetramethylbiphenyl. Polymer 2002, 43 (19), 5095-5104.
17.Wang, Z. Y.; Qi, Y. Poly(aryl prehnitimide)s. Macromolecules 1994, 27 (2), 625-628.
18.Li, F.; Kim, K.-H.; Savitski, E. P.; Chen, J.-C.; Harris, F. W.; Cheng, S. Z. Molecular weight and film thickness effects on linear optical anisotropy of 6FDA-PFMB polyimides. Polymer 1997, 38 (13), 3223-3227.
19.Cheng, S. Z.; Arnold Jr, F. E.; Zhang, A.; Hsu, S. L.; Harris, F. W. Organosoluble, segmented rigid-rod polyimide film. 1. Structure formation. Macromolecules 1991, 24 (21), 5856-5862.
20.Chern, Y.-T.; Twu, J.-T.; Chen, J.-C. High Tg and high organosolubility of novel polyimides containing twisted structures derived from 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2, 6-di-tert-butylbenzene. European polymer journal 2009, 45 (4), 1127-1138.
21.Chern, Y.-T.; Tsai, J.-Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1, 4-bis (4-aminophenoxy)-2, 6-di-tert-butylbenzene. Macromolecules 2008, 41 (24), 9556-9564.
22.Matsuura, T. Optical waveguides using perfluorinated polyimides and their optical device applications. Linear and nonlinear optics of organic materials IV, International Society for Optics and Photonics: 2004, pp 73-80.
23.Maksin, D. D.; Kljajevic, S. O.; Dolic, M. B.; Markovic, J. P.; Ekmescic, B. M.; Onjia, A. E.; Nastasovic, A. B. Kinetic modeling of heavy metal sorption by vinyl pyridine based copolymer. Hemijska Industrija 2012, 66(6), 795-804.
24.Ballantine, D. S.; Martin, S. J.; Ricco, A. J.; Frye, G. C.; Wohltjen, H.; White, R. M.; Zellers, E. T., Chapter 5 - chemical and biological sensors. Acoustic Wave Sensors, 1997, pp 222-330.
25.Kecili, R.; Hussain, C. M. Chapter 4 - mechanism of adsorption on nanomaterials. Nanomaterials in Chromatography, 2018, pp 89-115.
26.Lagergren, S.; Sven, K. Zurtheorie der sogenannten adsorption gelösterstoffe. 1898.
27.Ho, Y.-S. Review of second-order models for adsorption systems. Journal of Hazardous Materials 2006, 136 (3), 681-689.
28.Chanda, M.; Rempel, G. L., Selective chromate recovery with quaternized poly(4-vinylpyridine). Reactive Polymers 1993, 21 (1), 77-88.
29.Sun, C.; Qu, R.; Xu, Q.; Chen, H.; Ji, C.; Wang, C.; Sun, Y.; Cheng, G. Preparation of crosslinked polystyrene-supported ethylenediamine via a S-containing spacer and adsorption properties towards metal ions. European Polymer Journal 2007, 43 (4), 1501-1509.
30.Awual, M. R. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chemical Engineering Journal 2016, 303, 539-546.
31.Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Luminescent and redox-active polynuclear transition metal complexes. Chemical Reviews 1996, 96 (2), 759-834.
32.Hancock, R. D. The pyridyl group in ligand design for selective metal ion complexation and sensing. Chemical Society Reviews 2013, 42 (4), 1500-1524.
33.Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P. l.; von Zelewsky, A. Ru (II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews 1988, 84, 85-277.
34.Wang, B.; Wasielewski, M. R. Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials. Journal of the American Chemical Society 1997, 119 (1), 12-21.
35.Cumper, C.; Ginman, R.; Vogel, A., Physical properties and chemical constitution. Part XXXV. The electric dipole moments of some phenanthrolines and bipyridyls. Journal of the Chemical Society (Resumed) 1962, 226,1188-1192.
36.Dong, Y.; Koken, B.; Ma, X.; Wang, L.; Cheng, Y.; Zhu, C. Polymer-based fluorescent sensor incorporating 2, 2'-bipyridyl and benzo [2, 1, 3] thiadiazole moieties for Cu2+ detection. Inorganic Chemistry Communications 2011, 14 (11), 1719-1722.
37.Talanova, G. G.; Zhong, L.; Bartsch, R. A. New chelating polymers for heavy metal ion sorption. Journal of applied polymer science 1999, 74 (4), 849-856.
38.Pearson, R. G. Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.
39.Pearson, R. G. Hard and soft acids and bases, HSAB, part II: Underlying theories. Journal of Chemical Education 1968, 45 (10), 643.
40.Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. Journal of Chemical Education 1968, 45 (9), 581.
41.Talanova, G. G.; Zhong, L.; Kravchenko, O. V.; Yatsimirskii, K. B.; Bartsch, R. A. Noble metal ion sorption by pyridyl and bipyridyl group‐containing chelating polymers. Journal of applied polymer science 2001, 80 (2), 207-213.
42.Qu, R.; Sun, C.; Jl, C.; Wang, C.; Zhao, Z.; Yu, D.; Qu, R.; Sun, C. Synthesis and adsorption properties of macroporous cross-linked polystyrene that contains an immobilizing 2,5-dimercapto-1,3,4-thiodiazole with tetraethylene glycol spacers. Polymer Engineering and Science 2005, 45 (11), 1515-1521.
43.Sanchez, J. M.; Hidalgo, M.; Valiente, M.; Salvadóe, V. New macroporous polymers for the selective adsorption of gold (III) and palladium (II). I. The synthesis, characterization, and effect of spacers on metal adsorption. Journal of Polymer Science, Part A: Polymer Chemistry 2000, 38 (2), 269-278.
44.Sánchez, J. M.; Hidalgo, M.; Salvadó, V. Selective adsorption of gold (III) and palladium (II) on new phosphine sulphide-type chelating polymers bearing different spacer arms. Equilibrium and kinetic characterization. Reactive and Functional Polymers 2001, 46 (3), 283-291.
45.Ji, C.; Song, S.; Wang, C.; Sun, C.; Qu, R.; Wang, C.; Chen, H. Preparation and adsorption properties of chelating resins containing 3-aminopyridine and hydrophilic spacer arm for Hg(II). Chemical Engineering Journal 2010, 165 (2), 573-580.
46.Song, S.; Ji, C.; Wang, M.; Wang, C.; Sun, C.; Qu, R.; Wang, C.; Chen, H. Adsorption of silver(I) from aqueous solution by chelating resins with 3-aminopyridine and hydrophilic spacer arms: Equilibrium, kinetic, thermodynamic, and mechanism studies. Journal of Chemical and Engineering Data 2011, 56 (4), 1001-1008.
47.Diniz, C. V.; Doyle, F. M.; Ciminelli, V. S. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology 2002, 37 (14), 3169-3185.
48.Nagib, S.; Inoue, K.; Yamaguchi, T.; Tamaru, T. Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy 1999, 51 (1), 73-85.
49.Gao, J.; Liu, F.; Ling, P.; Lei, J.; Li, L.; Li, C.; Li, A. High efficient removal of Cu (II) by a chelating resin from strong acidic solutions: Complex formation and DFT certification. Chemical engineering journal 2013, 222, 240-247.
50.Parr, R. G., Density functional theory. Annual Review of Physical Chemistry 1983, 34 (1), 631-656.
51.Huang, J.; Zheng, Y.; Luo, L.; Feng, Y.; Zhang, C.; Wang, X.; Liu, X. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions. Journal of hazardous materials 2016, 306, 210-219.
52.Wang, R.; Men, J.; Gao, B. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu (II) ion. Clean–Soil, Air, Water 2012, 40 (3), 278-284.
53.Tekin, K.; Uzun, L.; Şahin, Ç. A.; Bektaş, S.; Denizli, A. Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal. Reactive and Functional Polymers 2011, 71 (10), 985-993.
54.Soleimani, B.; Taghavi, M.; Ghaemy, M. Synthesis, characterization and heavy metal ion adsorption behavior of imidazole-based novel polyamides and polyimides. Journal of the Mexican Chemical Society 2017, 61 (3), 229-240.
55.Chen, J.-C.; Wu, J.-A.; Li, S.-W.; Chou, S.-C. Highly phenylated polyimides containing 4,4'-diphenylether moiety. Reactive and Functional Polymers 2014, 78, 23-31.
56.Chen, J. C.; Liu, Y. T.; Leu, C. M.; Liao, H. Y.; Lee, W. C.; Lee, T. M. Synthesis and properties of organosoluble polyimides derived from 2, 2'‐dibromo‐and 2, 2', 6, 6'‐tetrabromo‐4, 4'‐oxydianilines. Journal of Applied Polymer Science 2010, 117 (2), 1144-1155.
57.Chen, J. C.; Wu, J. A.; Chang, H. W.; Lee, C. Y. Organosoluble polyimides derived from asymmetric 2‐substituted‐and 2, 2', 6‐trisubstituted‐4, 4'‐oxydianilines. Polymer international 2014, 63 (2), 352-362.
58.張惠雯, 「含不對稱結構的2-Bromo-與2,2',6-Tribromo-4,4'-Oxydianiline合成可溶性聚醯亞胺及其性質探討」, 碩士論文, 國立臺灣科技大學, 2011.
59.陳奕愷, 「由2,2'-bis(2,2'-bipyridinyl)-4,4'-oxydianiline合成聚醯亞胺及其性質探討」, 碩士論文, 國立臺灣科技大學, 2019.
60.Romero, F. M.; Ziessel, R. A straightforward synthesis of 5-bromo and 5, 5'-dibromo-2, 2'-bipyridines. Tetrahedron letters 1995, 36 (36), 6471-6474.
61.Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D.; Reider, P. J. An improved protocol for the preparation of 3-pyridyl-and some arylboronic acids. The Journal of organic chemistry 2002, 67 (15), 5394-5397.
62.Cai, D.; Hughes, D. L.; Verhoeven, T. R. A study of the lithiation of 2, 6-dibromopyridine with butyllithium, and its application to synthesis of L-739,010. Tetrahedron letters 1996, 37 (15), 2537-2540.
63.Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews 1995, 95 (7), 2457-2483.
64.Yan, S.; Chen, W.; Yang, X.; Chen, C.; Huang, M.; Xu, Z.; Yeung, K. W.; Yi, C. Soluble polyimides based on a novel pyridine-containing diamine m, p-PAPP and various aromatic dianhydrides. Polymer Bulletin 2011, 66 (9), 1191-1206.
65.Larsen, J. W.; Freund, M.; Kim, K. Y.; Sidovar, M.; Stuart, J. L. Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon 2000, 38 (5), 655-661.
66.Cegłowski, M.; Schroeder, G. Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine–pyrazole ligands onto polymethylhydrosiloxane. Chemical Engineering Journal 2015, 259, 885-893.
67.Ballal, D.; Chapman, W. G. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface. The Journal of chemical physics 2013, 139 (11), 114706.
68.Soeno, T.; Inokuchi, K.; Shiratori, S. Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films. Applied Surface Science 2004, 237 (1), 539-543.
69.Saadeh, H. A.; Shairah, E. A. A.; Charef, N.; Mubarak, M. S. Synthesis and adsorption properties, toward some heavy metal ions, of a new polystyrene‐based terpyridine polymer. Journal of applied polymer science 2012, 124 (4), 2717-2724.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2030/08/26 (校外網路)
全文公開日期 2030/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE