簡易檢索 / 詳目顯示

研究生: 許富喬
Fu-Ciao Syu
論文名稱: 電動車充電椿電源模組之電磁干擾分析
Electromagnetic Interference Analysis for Electric Vehicle Power Charger Module
指導教授: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
口試委員: 羅有綱
Yu-Kang Lo
林景源
Jing-Yuan Lin
劉邦榮
Pang-Jung Liu
劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 109
中文關鍵詞: Vienna架構全橋相移電磁干擾濾波器耦合電感
外文關鍵詞: Vienna topology, phase shift full bridge, EMI, filter, couple inductor
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文目標在計算交錯式Vienna功率因數修正器和全橋相移之電磁干擾雜訊,進而設計出適當的濾波器。利用離散傅立葉分析法將開關、二極體波形上升/下降時間微分後做傅立葉變換得其頻域上之雜訊,再將此頻譜之雜訊值通過共模與差模的等效路徑後分壓至線路阻抗穩定網路,即可得知Vienna功因修正器與全橋相移之共模與差模之雜訊,並從數學模型中得知哪些因素造成較高的雜訊。依照轉換器架構去分析出合適濾波器拓樸結構,並利用計算的數學模型減去限制值,求得雜訊衰減值後,設計出濾波器參數,符合CISPR 22 Class A之電動車規範。


This dissertation aims to calculate the Electro-Magnetic Interference (EMI) noise of interleaved Vienna power factor correction and Phase shift full bridge (PSFB), and then design the appropriate filter. The discrete Fourier analysis method is used to differentiate the switch/diode waveform rise/fall time and then perform Fourier transform to obtain the noise in the frequency domain, the noise value of the spectrum is passed through the cicuit equivalent path of the common mode and the differential mode, finally noise across the line impedance to stabilize the network(LISN), obtain the common mode and differential mode noise of the Vienna and PSFB. Factors resulting in higher noise are found from the mathematical model. According to the converter architecture, the filter topology is analyzed and selected, and the mathematical model is used to subtract the limit value to obtain the noise attenuation value. In the end, the filter parameters are designed, and they comply with the specification of electric vehicle CISPR 22 Class A.

摘要 i Abstract ii 誌 謝 iii 目 錄 iv 圖目錄 vi 表目錄 xii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文具體貢獻 2 1.3 論文大綱 2 第二章 待測物電路架構介紹 4 2.1 Vienna架構介紹 4 2.2 Vienna電路動作分析 7 2.3 全橋相移架構介紹 10 2.4 全橋相移電路動作分析 11 第三章 拾取雜訊計算與頻譜包絡分析法 16 3.1 LISN介紹 17 3.2 EMI接收器簡介及規範 19 3.3 頻譜包絡分析法 22 第四章 雜訊源與路徑分析 28 4.1雜訊源 28 4.1.1 Vienna開關上之雜訊 29 4.1.2 全橋相移開關上之雜訊 33 4.2 雜訊路徑分析 37 4.2.1 Vienna共模路徑分析 37 4.2.2 全橋相移共模寄生電容分析 41 4.2.3 全橋相移共模路徑分析 46 4.2.4 共模總雜訊分析 52 4.2.5 差模路徑之等效阻抗 52 4.2.6 Vienna差模路徑分析 54 4.2.7 全橋相移差模路徑分析 57 4.2.8 總差模雜訊分析 60 4.3 總雜訊分析 60 第五章 濾波器設計以及實測驗證 62 5.1 差模共模濾波器元件 62 5.2 差模與共模濾波器拓樸結構選擇 66 5.3 濾波器參數設計 74 5.3.1 共模濾波器設計 76 5.3.2 差模濾波器設計 79 5.4 實測驗證 84 第六章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 91 參考文獻 92

[1] Thiago B. Soeiro, and Johann W. Kolar, "Design and Implementation of a Two-Channel Interleaved Vienna-Type Rectifier With > 99% Efficiency", IEEE Transactions on Industrial Electronics, vol. 60, no. 9, sept 2013.
[2] Z. Liu, Z. Huang, F. C. Lee and Q. Li, “Digital-based interleaving control for GaN-based MHz CRM totem-pole PFC, ” 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 1847-1852.
[3] Wu Chen, Xinghe Fu, Chenyang Xue, Han Ye, Waqar Azeem Syed, Liangcai Shu, Guangfu Ning, and Xiaodan Wu, “Indirect Input-Series Output-Parallel DC–DC Full Bridge Converter System Based on Asymmetric Pulsewidth Modulation Control Strategy” IEEE Transactions on Power Electronics, vol. 34, no. 4, Apr 2019.
[4] F. Krug, S. Braun, and P. Russer, “A novel quasi-peak-detector for time-
domain EMI-measurements,” Adv. Radio Sci., vol. 2, pp. 27-32, 2004.
[5] F. Krug, S. Braun, Y. Kishida, and P. Russer, “A novel digital quasi-
peak detector for time-domain measurements,” in Proc. 33rd Eur. Microw.Conf., 2003, pp. 1027-1030.
[6] Z. J. Wang, S. Wang, P. J. Kong, and F. C. Lee, “DM EMI noise prediction for constant on-time, critical mode power factor correction converters, ”IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3150-3157, Jul. 2012.
[7] S. Braun, T. Donauer, and P. Russer, “A real-time time-domain EMI measurement system for full-compliance measurements according to CISPR16-1-1,” IEEE Trans. Electromagn. Compat., vol. 50, no. 2, pp. 259–26,May 2008.
[8] T. Nussbaumer, M. L. Heldwein, and J. W. Kolar, “Differential mode input filter design for a three-phase buck-type PWM rectifier based on modeling of the EMC test receiver,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1649-1661, Oct. 2006.
[9] Q. Ji, X. B. Ruan, and Z. H. Ye, “The worst conducted EMI spectrum
of critical condunction mode boost PFC converter,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1230-1241, Mar. 2015.
[10] CISPR 22 Class A “Internationl electrotechnical commission,” International special committee on radio interference, fifth edition 2005-04.
[11] David B Geselowitz, “Response of Ideal Radio Noise Meter to Continuous Sine Wave, Recurrent Impulses, and Random Noise, ”IRE Transactions On Radio Frequency Interference, May. 1961.
[12] J. Hu, J. von Bloh and R. W. De Doncker, “Typical impulses in power electronics and their EMI characteristics,” IEEE 35th Annual Power Electronics Specialists Conference, Vol. 4, pp. 3021-3027, 2004.
[13] O'Neil, “Advanced Engineering Mathematics 8/e,” US:Cengage Learning, pp. 528-579.
[14] C. R. Paul, Introduction to Electromagnetic Compatibility, New York: Wiley, 1992, pp. 335-392.
[15] H. Ye, Z. Yang, J. Dai, C. Yan, X. Xin, and J. Ying, “Common mode
noise modeling and analysis of dual boost PFC circuit,” in Proc. Int.
Telecommun. Energy Conf, Sep. 19-23, 2004, pp. 575-582.
[16] S. Wang, P. Kong, and F. C. Lee, “Common mode noise reduction for boost converters using general balance technique,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1410-1416, Jul. 2007.
[17] S. Qu and D. Y. Chen, “Mixed-mode EMI noise and its implications to filter design in offline switching power supplies,” in Proc. IEEE APEC’00, 2000, vol. 2, pp. 707-713.
[18] R. Zhang, X. Wu, and T. Wang, “Analysis of common mode EMI for three-phase voltage source converters,” in Proc. Power Electron. Specialist Conf., 2003, pp. 1510-1515.
[19] Michael Hartmann, Hans Ertl, Johann W. Kolar, “EMI Filter Design for a 1 MHz 10 kW Three-Phase/Level PWM Rectifier,” Power Electronics IEEE Transactions on, vol. 26, no. 4, pp. 1192-1204, 2011.
[20] Lihong Xie, Xinbo Ruan, Zhihong Ye. “Equivalent Noise Source: An Effective Method for Analyzing Common-Mode Noise in Isolated Power Converters”, IEEE Transactions on in Industrial Electronics, vol. 63, no. 5, May 2016.
[23] L. Xie, X. Ruan, and Z. Ye, “Modeling of common-mode noise in phase shift full-bridge converter,” in Proc. IEEE Annu. Conf. Ind. Electron. Soc., Oct. 2016, pp. 1371-1375.
[22] R. Goswami and Shuo Wang, “Differential mode (DM) current ripple EMI noise analysis for three-phase Vienna type rectifiers,” in Proc. Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, 2016, pp. 975-981.
[23] C. Henglin, Q. Zhaoming, Y. Shaodong, and C. Wolf, "Finite-Element Modeling of Saturation Effect Excited by Differential-Mode Current in a Common-Mode Choke," IEEE Trans. Power Electron., vol. 24, pp. 873-877, 2009.
[24] Shuo Wang, F. C. Lee and W.G. Odendaal, “Improving the Performance of Boost PFC EMI Filters, “ Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003.
[25] 李鴻麒,被動式緩振器對電源轉換器傳導干擾之影響,國立台灣
科技大學電機工程系研究所碩士論文,2006年。

無法下載圖示 全文公開日期 2024/09/24 (校內網路)
全文公開日期 2024/09/24 (校外網路)
全文公開日期 2024/09/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE