簡易檢索 / 詳目顯示

研究生: 陳冠融
Kuan-Jung Chen
論文名稱: (100-x)(Bi0.5Na0.5)TiO3-xBaTiO3 陶瓷系統巨觀電性與微觀結構演化行為
Electric properties and micro structural evolution in (100-x)(Bi0.5Na0.5) TiO3-xBaTiO3 ceramics
指導教授: 周振嘉
Chen-chia Chou
口試委員: 陳宜君
Yi-chun Chen
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 非鉛壓電陶瓷鈦酸鉍鈉大應變穿透式電子顯微鏡壓電力顯微鏡
外文關鍵詞: Lead free piezoceramics, Giant strain, PFM
相關次數: 點閱:219下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究以 (100-x)(Bi0.5Na0.5)TiO3-xBaTiO3,x = 0~12% (簡稱 BNT-xBT) 陶瓷系統,進行巨觀電性 (介電、鐵電、壓電) 之量測,並搭配穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 與壓電響應力顯微鏡 (Piezoresponse Force Microscopy, PFM) 分析結果來探討 BNT-xBT 陶瓷在不同 Ba2+ 含量下之材料電性、晶體結構、微觀電域形貌與電域受施加電場的響應行為之一系列演化情形探討。
  由巨觀電性來看 BNT-xBT (x = 0~5%) 陶瓷系統具有鐵電特性,其鐵電與應變遲滯曲線展現出典型的 “矩形” 狀 P-E 與 “蝴蝶” 狀 S-E 曲線,具高矯頑電場 ( Ec ≒ 38~56 kV/cm ) 與低應變量 (Strain% ≒ 0.12~0.17%)。而微觀電域形貌與結構方面,在 Pure BNT 晶粒內發現了具有 R3c 對稱結構之長程片狀電域。隨 Ba2+ 含量增加至 3% 時,具 P4bm 對稱結構之正方晶相 (Tetragonal) 開始出現於 R3c 對稱結構之菱方晶相 (Rhombohedral) 晶格中,並發現 R3c 長程片狀電域與 P4bm 和 R3c 混和之雜草狀 (Tweed-liked) 短程電域具有共存之現象。
  當 Ba2+ 含量增加至 6~8% 時矯頑電場驟降 (Ec ≒ 12~13 kV/cm),鐵電與應變遲滯曲線具有很大之驟變,由原本典型鐵電材料之 ”矩形” 狀 P-E 與 “蝴蝶” 狀 S-E 曲線轉變成類似反鐵電材料之 “船槳” 狀 P-E 與 “ V “ 狀之 S-E 曲線,其應變量 (Strain% ≒ 0.21~0.30%) 與壓電特性 (d33 ≒ 175~208pC/N) 都有大幅的提升,在 BNT-7BT 陶瓷中其應變量更高達 0.3 %,這代表材料在此成分區間之電性行為與低 Ba2+ 含量之成分點不同。在微觀結構方面,所有電域形貌皆轉變成無明顯對比的奈米電域,在電子繞射圖譜分析發現此成分區間除了 R3c 與 P4bm 兩相共存外,更在 Zone [100]p 中發現具 Pnma 對稱結構之反鐵電相,因此我們認為此區間的成分系統會有這樣優異之壓電特性以及 P-E 曲線變成 ”船槳” 狀可能是因為具鐵電行為之 R3c、P4bm 與反鐵電 Pnma 相共存的結果。
  接著繼續添加 Ba2+ 含量至 9~12% 發現,P-E 與 S-E 曲線又變回鐵電之 “矩形” 與 “蝴蝶“ 狀曲線,壓電係數 (d33 ≒ 141~164pC/N) 與應變 (Strain% ≒ 0.14~0.17%) 特性也隨著 Ba2+ 含量的增加而下降,此時 R3c 與 Pnma 相消失並且取而代之是長程層狀 (Lamellar) 的 P4mm 電域產生,此時材料逐漸變成穩定的正方晶 (Tetragonal) 結構。
  在 PFM 的分析結果發現,Pure BNT 陶瓷中存在著無特定排列方向的 PNRs (Polar nano-regions),隨著 Ba2+ 含量的添加,這些 PNRs 會自我組織 (Self-organization) 而且尺寸會變得越小。在 Ba2+ 含量為 6~8% 的陶瓷系統中,我們發現這些奈米尺寸的 PNRs 除了有自我組織的行為外,還著沿特定晶格方向排列。經由微區壓電響應曲線量測,其結果發現壓電響應 (Piezoresponse) 與振幅 (Amplitude) 曲線與巨觀量測的 P-E、S-E 曲線相似,具有鐵電與反鐵電共存之現象,此現象正好呼應巨觀電性與 TEM 之分析結果。而在 9~10% Ba2+ 含量的陶瓷中,長程 Lamellar 電域則開始出現,與 TEM 的結果相同。
  最後,我們藉由寫入正負電場的方式來探討 BNT-7BT 與 BNT-12BT 陶瓷的電域翻轉行為發現,BNT-7BT 陶瓷的 PNRs 會隨電場的方向翻轉並成核成長成長程電域結構而造成表面應變,而 BNT-12BT 陶瓷則如一般 Tetragonal 結構之鐵電材料,具有 90° 與 180° 之電域翻轉行為,因此我們可以說明 Ba2+ 含量在 x = 6~8% 的區間內,有這樣優異之壓電特性、大應變量以及 S-E 曲線變成 ” V ” 狀是因為具鐵電行為之 R3c、P4bm 與反鐵電 Pnma 的電域翻轉與相變所造成的結果。


In this work, (100-x) (Bi0.5Na0.5) TiO3-x BaTiO3 (abbreviated as BNT-xBT with x = 0 ~12%) piezoceramics had been successfully fabricated by oxide mixing route. The electrical properties measurement revealed that the optimum properties is achieved in BNT-6BT~BNT-8BT ceramics. The giant strain was occurred during the piezoelectric measurement of BNT-7BT specimen in which achieved 0.30%.
Microstructured features demonstrated that pure BNT ceramic reveals long-range sheet domain with R3c symmetrical structure. Then, microstructures of BNT-3BT ceramic reveal that partical P4bm symmetry appear in R3c matrix, and TEM image shows the large (R3c) domain and Tweed-liked (R3c+P4bm) domain co-existence in one grain. In BNT-6BT~BNT-8BT ceramics, the ferroelectric (FE) characterization of R3c and P4bm symmetrics and the anti-ferroelectric (AFE) of Pnma symmetry co-exist in one grain, demonstrating that the P-E curve pinched-off behaviors are attributed to the coexistance of FE and AFE symmetrics in the grains at room temperature. In BNT-9BT~BNT-12BT ceramics, TEM diffraction patterns reveal that disapperance of R3c symmetry and appearance of P4mm symmetry with long range lamellar domain, indicating that the structure transfer from Rhombohedral to Tetragonal and the electric properties change to a ferroelectric behaviors.
Furethremore, PFM microstructural features reveal random polar nano-regions (PNRs) in pure BNT ceramics, and then the PNRs will become smaller and self-organize with increase of BaTiO3 addition. In BNT-6BT~BNT-8BT ceramics reveal that the PNRs showing smaller and array along the specific crystal direction. In micro piezoresponse measurements, we found the FE and AFE phase co-exist in one grain. This results show good agreement with pervius electric properties and TEM results. In BNT-9BT~BNT-12BT ceramics, PFM features showed the lamellar domain as well as TEM images.
In summary, the mechanisms of giant strain in BNT-6BT~BNT-8BT ceramics are due to the coexistence of FE (R3c+P4bm) and AFE (Pnma) symmetrics.

中文摘要.........................................................I Abstract.......................................................III 誌謝............................................................V 目錄............................................................VI 圖目錄.........................................................VIII 表目錄.........................................................XIII 第一章 緒論................................................... 1 第二章 文獻回顧與基礎理論........................................3 2-1 壓電材料系統.................................................3 2-2 含鉛壓電陶瓷材料..............................................4 2-3 無鉛壓電陶瓷材料..............................................5 2-4 (Bi0.5Na0.5)TiO3 晶體結構與物理性質...........................7 2-5 (100-x)(Ba0.5Na0.5)TiO3+ x%BaTiO3 系統之 MPB 文獻回顧........11 2-6 BNT 基陶瓷電場誘發大應變機制之文獻回顧...........................16 2-7 研究主題探討.................................................21 第三章 實驗製作與檢測方法........................................23 3-1 原料........................................................23 3-2 材料合成.....................................................23 3-3 實驗流程....................................................26 3-4 實驗分析....................................................27 3-4-1 熱分析儀..................................................27 3-4-2 密度量測..................................................27 3-4-3 X-ray繞射儀...............................................28 3-4-4 鐵電遲滯曲線及應變曲線量測....................................28 3-4-5 介電量測..................................................29 3-3-6 掃描式電子顯微鏡............................................30 3-3-7 場發射槍穿透式電子顯微鏡......................................30 3-3-8 壓電響應力顯微鏡............................................30 第四章 結果與討論...............................................32 4-1 容忍因子....................................................32 4-2 X-Ray 繞射分析..............................................33 4-3 掃描式電子顯微鏡微觀分析.......................................36 4-4 介電性質分析.................................................39 4-5 鐵電壓電曲線量測..............................................50 4-6 BNT-xBT 陶瓷系統 TEM 分析....................................58 4-7 BNT-xBT 陶瓷系統 PFM 分析....................................77 4-8 PFM 電域動態翻轉行為分析.......................................98 4-9 電場誘發相變行為分析..........................................104 4-10 奈米電域 Model.............................................108 第五章 結論...................................................110 第六章 參考文獻................................................113 附錄...........................................................113

1. Goyer RA, “Lead toxicity: current concerns”, Environmental Health Perspectives, 100, 177-87, (1993).
2. Q. Xu, X. L. Chen, “Effect of MnO addition on structure and electrical properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics prepared by citrate method”, Materials Science and Engineering B, 130, 94, (2006).
3. T. Takenaka and H. Nagata, “Current status and prospects of lead-free piezoelectric ceramics”, Journal of the European Ceramic Society, 25, 2693, (2005).
4. Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, “Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics”, Journal of Applied Physics, 92, 1489, (2002).
5. Y. Yuan, S. Zhang, X. Zhou, and J. Liu, “Phase transition and temperature dependences of electrical properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics”, Japanese Journal of Applied Physics, 45, 831, (2006).
6. X. X. Wang, S. H. Choy, and H. L. W. Chan, “Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics”, Journal of Applied Physics, 97, 1, (2005).
7. Y. Hosono, K. Harada, and Y. Yamashita, “Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3”, Japanese Journal of Applied Physics, 40, 5722, (2001).
8. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems”, Japanese Journal of Applied Physics, 38, 5564-5567, (1999).
9. Y. Makiochi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenaka, “(Bi1/2Na1/2)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Based Lead-Free Piezoelectric Ceramics”, Japanese Journal of Applied Physics, 44, 4350, (2005).
10. T. Takenaka, K. I. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics”, Japanese Journal of Applied Physics, 30, 2236, (1991).
11. M. Kimura, A. Ando, T. Sawada, and K. Hayashi, “Piezoelectric ceramic composition and piezoelectric ceramic device using the same”, U.S. Pat. , 6258291, (2001).
12. T. Takenaka, M. Hirose, and K. Miyabe, “Piezoelectric ceramic composition”, U.S. Pat., 6004474, (1999).
13. T. Takenaka,“Dielectric ceramic composition”, U.S. Pat., 5637542, (1997).
14. M. Kimura, T. Ogawa, and A. Ando, “Piezoelectric ceramic composition”, U.S. Pat., 6093339, (2000).
15. Murata Manufacturing Co., Ltd., Japan Pat., 56778, (2006).
16. Murata Manufacturing Co., Ltd., Japan Pat., 3259677, (2005).
17. TDK, Japan Pat., 2942535, (2005).
18. TDK, Japan Pat., 082422, (2005).
19. Taiyo Yuden, Japan Pat., 75449, (2004).
20. Kyocera, Japan Pat., 34574, (2003).
21. L.E. Cross, “Lead-free at last”, Nature, Vol. 432, 24, (2004).
22. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics”, Nature, Vol. 432, 84, (2004).
23. H. H. D. Li, C. D. Feng, and W. L. Yao, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2) TiO3-BaTiO3 morphotropic phase boundary composition”, Materials Letters, Vol. 58(7-8), pp. 1194-1198, (2004).
24. 吳朗,電子陶瓷-介電,全欣科技圖書, (1994).
25. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons,Inc., New York, (2003).
26. C. A. Randall, R. Eitel, and I. M. Reaney, “Investigation of a high Tc piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3-(x)PbTiO3”, J. Appl. Phys., 95 [7], 3633-39, (2004).
27. S. M. Choi, C. J. Stringer, and C. A. Randall, “Structure and property investigation of a Bi-Based perovskite solid solution: (1-x) Bi(Ni1/2Ti1/2)O3-(x) PbTiO3”, J. Appl. Phys., 98, 034108, (2005).
28. C. J. Stringer, R. E. Eitek, and I. M. Reaney, “Phase transition and chemical order in the ferroelectric perovskite (1-x) Bi(Mg3/4W1/4)O3-(x)PbTiO3 solid solution”, J. Appl. Phys., 97, 024101, (2005).
29. M. Kimura, A. Ando, T. Sawada, and K. Hayashi, U.S. Patent 6258291, Jul. 10, (2001).
30. M. Kimura, T. Ogawa, and A. Ando, U.S. Patent 6093339, Jul. 25, (2000).
31. 小川弘純、木村雅彥、山口達也、安藤陽,Murata Manufacturing Co., LTD.,中華民國專利 I262512, (2006).
32. 塚田岳夫、東智久、賴廣正和,TDK Co., LTD.,中華民國專利 I261051, (2006).
33. 塚田岳夫、東智久、賴廣正和、剛均,TDK Co., LTD.,中華民國專利200524191, (2005).
34. 澤田拓也、木村雅彥、安藤陽、林宏一,Murata Manufacturing Co., LTD.,中華民國專利469447, (2001).
35. A.S. Bhalla, R. Guo, and R. Roy, “The perovskite structure – a review of its role in ceramic science and technology”, Mater. Res. Innovat., 4, 3-26, (2000).
36. G. A. Smolenskii, V. A. Isupov, and N. N. Krainik, “New ferroelectrics of complex composition”, Sov. Phys.-Solid State, 2 [11], 2651-2654, (1961).
37. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3”, J. Phys. Chem. Solids, 62, 1271-1276, (2001).
38. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3”, Acta Cryst., B58, 168-178, (2002).
39. V. Dorcet and G. Trolliard, “A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3”, Acta Materialia, vol. 56, pp. 1753-1761, (2008).
40. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds”, Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, (1960).
41. D. Rout, K.-S. Moon, and S.-J. L. Kang, "Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy", Journal of the Ceramic Society of Japan, vol. 117, pp. 797-800, (2009).
42. C. Ma, X. Tan, E. Dul'Kin, and M. Roth, “Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3- xBaTiO3 ceramics”, Journal of Applied Physics, vol. 108, (2010).
43. J.Yao, and Li Yan,” Evolution of domain structures in Na1/2Bi1/2TiO3 single crystals with BaTiO3”, PHYSICAL REVIEW B 83, 054107, (2011).
44. Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, ”Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family”, Applied Physics Letters, vol. 73, pp. 3683-3685, (1998).
45. Y. Hosono, K. Harada, and Y. Yamashita, “Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 40, pp. 5722-5726, (2001).
46. B.-J. Chu, D.-R. Chen, G.-R. Li, and Q.-R. Yin, “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics”, Journal of the European Ceramic Society, vol. 22, pp. 2115-2121, (2002).
47. R. Ranjan and A. Dviwedi, “Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10”, Solid State Communications, vol. 135, pp. 394-399, (2005).
48. M. H. K. T.K. Song, Y.S. Sung, H.G. Yeo and S.H. Lee, “Depolarization Temperatures in Pb-Free Piezoelectric Materials”, Journal of Korean Physical Society, vol. 51, pp. 697-700, (2007).
49. C. Xu, D. Lin, and K. W. Kwok, “Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics”, Solid State Sciences, vol. 10, pp. 934-940, (2008).
50. G. Picht, J. Topfer, and E. Hennig, “Structural properties of (Bi0.5Na0.5)1−xBaxTiO3 lead-free piezoelectric ceramics”, Journal of the European Ceramic Society, vol. 30, pp. 3445-3453, (2010).
51. B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, “Structural complexity of Na0.5Bi0.5TiO3-xBaTiO3 as revealed by Raman spectroscopy”, Physical Review B, vol. 82, p. 104112, (2010).
52. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, “Not-Roles of lattice distortion in (1-x) (Bi0.5Na0.5)TiO3-x BaTiO3 ceramics”, Applied Physics Letters, vol. 96, (2010).
53. S.-T. Zhang, A. B. Kounga, E. Aulbach, and Y. Deng, “Temperature-Dependent Electrical Properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Ceramics”, Journal of the American Ceramic Society, vol. 91, pp. 3950-3954, (2008).
54. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, “Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics”, Applied Physics Letters, vol. 92, (2008).
55. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions”, Journal of Applied Physics, vol. 104, (2008).
56. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, “Giant strain in lead-free (Bi0.5 Na0.5) Ti O3 -based single crystals”, Applied Physics Letters, vol. 92, (2008).
57. K. N. Pham, A. Hussain , C. W. Ahn, I. W. Kim, S. J. Jeong, and J. S. Lee,” Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics”, Materials Letters, 64, 2219, (2010).
58. W. Liu, and X. Ren.” Large Piezoelectric Effect in Pb-Free Ceramics”, Physical Review Letters, 103, 257602, (2009).
59. A. Hussain, C. W. Ahn, J. S. Lee, U. Aman, and I. W. Kim,” Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics” Sensors and Actuators A, 158, 84, (2010).
60. Y. Guo, Y. Liu, R. L. Withers, F. Brink, and H. Chen,” Large Electric Field-Induced Strain and Antiferroelectric Behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics”, Chemistry of Materials, vol. 23, pp. 219-228, (2010).
61. Hugh Simons, John Daniels, and Wook Jo, “Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3”, Appl. Phys. Lett. 98, 082901, (2011).
62. Z. Xu, X. Dai, and D. Viehland,” Impurity-induced incommensuration in antiferroelectric La-modified lead zirconate titanate”, Physical Review Letters, 51, 6261, (1995).
63. A. B. K. Y.L. Wang, C. Hoffmann, “Large Strain Lead Free Ceramic Materials for Actuators”, Applications of Ferroelectrics, 1099-4734, (2009).
64. X. Ren, “Large Electric-Field-Induced Strain in Ferroelectric Crystals by Point-Defect-Mediated Reversible Domain Switching “, Nature Materials vol. 3, pp. 91-94, (2004).
65. S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. Rodel, “Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 I. Structure and room temperature properties”, Journal of Applied Physics, vol. 103, (2008).
66. W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, “Origin of the large strain response in (K0.5Na0.5)NbO3 -modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezo-ceramics”, Journal of Applied Physics, vol. 105, (2009).
67. Wen-feng Liu and Xiao-bing Ren,” Large Piezoelectric Effect in Pb-Free Ceramics”, Physical Review Letters, 103, 257602, (2009).
68. J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, “Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93% (Bi0.5Na0.5) TiO 3 -7% BaTiO3 piezoelectric ceramic”, Applied Physics Letters, vol. 95, (2009).
69. Y. Noguchi, S. Teranishi, M. Suzuki, and M. Miyayama, “Electric-field-induced giant strain in Bi0.5Na0.5TiO3-based single crystals: Influence of high-oxygen-pressure annealing”, Journal of the Ceramic Society of Japan, vol. 117, pp. 32-36, (2009).
70. 梁兆宇,”鈦酸鋇鈉基非鉛壓電陶瓷電場誘發應變行為研究”,國立台灣科技大學機械工程系碩士論文, (2010).
71. 黃宇寬、余泊學、王漢賢、林立惟、余進忠, ”壓電力顯微鏡簡介”, (2010).
72. A. M. Glazer, “Simple ways of determining perovskite structure”, Crystallographica, A31, 756, (1975).
73. W. H. Lee, W. A. Groen, H. Schreinemacher and D. Hennings,”Dysprosium doped dielectric materials for sintering in reducing atmospheres”, Journal of Electroceramics, 5[1], 31, (2000).
74. Olaf Muller, “The Major Ternary Structural Families”, Springer-Verlag, Berlin, (1974).
75. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallographica Section A, vol. 32, pp. 751-767, (1976).
76. Brianti Satrianti Utami, “A Comprehensive Study Of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 Lead Free Piezoceramic and Its Electric Field Induced Large Strain- Dependent Composition”, 國立台灣科技大學機械工程系碩士論文, (2012).
77. Xiaoli Tan, Cheng Ma, “The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics”, J. Am. Ceram. Soc., 94 [12] 4091–4107, (2011).
78. V.V.Shvartsman, “Polar structures of PbMg1/3Nb2/3O3-PbTiO3 relaxors”, Journal of Advanced Dielectrics Vol. 2, No. 2, (2012).
79. Radheshyam Rai,and Indrani Coondoo, “Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1-x)K0.5Na0.5NbO3- xLiNbO3 ceramics”, Current Applied Physics 13, 430-440, (2013).
80. Robert Dittmer , Wook Jo , Jurgen Rodel , “Nanoscale Insight Into Lead-Free BNT-BT-xKNN”, Adv. Funct. Mater, 10.1002, (2012).
81. H. Birk, J. Glatz-Reichenbach, Li Jie, E. Schreck, and K. Dransfeld, “The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy”, J. Vac. Sci. Technol. B, 9, 1162, (1991).
82. P. Guthner and K. Dransfeld, “Local poling of ferroelectric polymers by scanning force microscopy”, Appl. Phys. Lett. 61, 1137, (1992).
83. A. Gruverman, O. Auciello, and H. Tokumoto,” Scanning force microscopy for the study of domain structure in ferroelectric thin films”, J. Vac. Sci. Technol. B, 14, 602-605, (1996).
84. A. Gruverman, O. Auciello, and H. Tokumoto, “Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films”, Appl. Phys. Lett. 69, 3191-3193, (1996).
85. A. Gruverman, O. Auciello, and H. Tokumoto, “IMAGING AND CONTROL OF DOMAIN STRUCTURES IN FERROELECTRIC THIN FILMS VIA SCANNING FORCE MICROSCOPY”, Annual Review Mater. 28, 101-123, (1998).
86. Sergei V. Kalinin, Brian J. Rodriguez, and Stephen Jesse, “Vector Piezoresponse Force Microscopy”, Microsc. Microanal, 12, 1-15, (2006).
87. Roger Proksch and Sergei Kalinin, “Piezoresponse Force Microscopy with Asylum Research AFMs”, Asylum Research, (2010).
88. Catalin Harnagea, “Local piezoelectric response and domain structures in ferroelectric thin films investigated by voltage-modulated force microscopy”, Ph.D. thesis of Mathematisch-Naturwissenschaftlich-Technischen Fakultat, Martin-Luther-Universitat Halle Wittenberg, (2001).
89. 謝忠佑,” 利用原子力顯微鏡研究DNA結構變遷”, 國立成功大學物理研究所碩士論文, (2012).

QR CODE