簡易檢索 / 詳目顯示

研究生: 蔡佩晴
Pei-Ching Tsai
論文名稱: 帶高度表面電荷之次微米孔作為中尺度離子二極體裝置與超高效滲透能源產生器之實現
Realization of Mesoscale Ionic Diodes and Ultrahigh-Performance Osmotic Power Generators with Highly Charged Submicroscale Pores
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 蔡德豪
De-Hao Tsai
黃俊仁
Jiun-Ren Hwang
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 132
中文關鍵詞: 奈米流體聚電解質離子傳輸離子電流整流滲透能源轉換
外文關鍵詞: Nanofluidics, Polyelectrolyte, Ion transport, Ion current rectification, Osmotic energy conversion
相關次數: 點閱:257下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  近十年來,科學家們創建了各種基於奈米尺度的滲透能源產生器,因奈米尺度下受限的滲透電流與滲透電導,而導致滲透能源輸出受到限制,如何突破滲透能源轉換的效能,使得其成為藍色能源的潛力股,是我們的研究所在。我們認為引入一個更大尺度的孔道可以提高滲透電流,並突破滲透能源輸出的限制,從而實現高效滲透能源轉換。在這裡將進行一系列關於次微米孔道應用在中尺度離子二極體與滲透能源產生器的概念驗證研究,我們發現在pH 11的環境下,帶高度表面負電荷的單個次微米孔道(尖端孔徑約為400 nm)在1000倍濃度梯度下的滲透能源輸出達到前所未有的667 pW(滲透電流為27.5 nA、滲透電壓97 mV),此效能優於先前報導的所有單個滲透能源產生器,來到了一個新的高度。我們更進一步地將研究擴展至中性的環境下,以期更佳的適應實際需求。利用聚電解質功能化的次微米孔道(尖端孔徑為700-800 nm)製備成為中尺度離子二極體,此系統在1000倍濃度梯度下實現了高達254 pW的滲透能源輸出(滲透電流為20.7 nA、滲透電壓49 mV),是其他中性環境下的單個滲透能源產生器的5倍以上,另外此系統也展現了極高的穩固性。我們認為這一系列的概念驗證研究可為日後的滲透能源產生器開闢出全新的道路。


Over the past decade, topics on ionic diodes and osmotic power generators have been extensively studied using nanometer-scale pores. Although those nanoscale pores can provide sufficient ion selectivity, using such tiny pores also limits the device performance due to their limited current and high resistance. Here, we successfully make two breakthroughs on ionic diode and osmotic power generator using large-sized submicroscale pores. In the first work, we fabricate a single conical pore with tip diameter of ~400 nm and demonstrate that this pore can function as ionic diode at high pH 11, indicating that the large-sized pore starts to have ion selectivity. Modeling suggests that the nonlinear ion current rectification (ICR) phenomenon stems from the highly charged pore walls at the nanoconfinement. Further application of this pore in the osmotic power shows that the single submicroscale pore can produce a record-high power of up to 667 pW under a 1000-fold salinity gradient (the corresponding osmotic current of 27.5 nA and osmotic voltage of 97 mV). Although the power achieved outperforms all the state-of-the-art single-nanopore osmotic power generators reported, the major drawback of this work comes from the high basic solution, which may damage biological samples or the PET membranes used. This issue has been resolved in our second work, where we realize the submicroscale ionic diode which can still function at mild neutral pH by the electrophoretic functionalization of single submicroscale conical pores (tip side 700-800 nm) with high molecular weight poly-L-lysine (PLL). Further application results show that the PLL functionalized pore can achieve an osmotic power as high as 254 pW at neutral pH and 1000-fold KCl gradient (the corresponding osmotic current of 20.7 nA and osmotic voltage of 49 mV). Note that the maximum power reached is 5 times higher than the other single nanopore-based osmotic power generators tested under the same condition. We also present data to show high osmotic power conversion stability of using the PLL functionalized submicroscale pore, indicating its robustness as a promising candidate for long-term practical applications. We firmly believe that these proof-of-concept researches on submicroscale ionic diodes presented would pave a new way towards high-performance osmotic power generators.

中文摘要 i Abstract ii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機 10 第二章 原理與機制 12 2.1 電雙層 12 2.2 離子選擇性 14 2.3 離子電流整流行為與離子二極體 15 2.4 滲透能源轉換 17 2.4.1 滲透電壓與滲透電流 18 2.4.2 滲透能源輸出、滲透電導與陽離子選擇性 19 第三章 實驗用品與步驟 21 3.1 實驗用品 21 3.1.1 實驗材料 21 3.1.2 實驗藥品 21 3.1.3 實驗儀器設備 25 3.1.4 實驗裝置 26 3.2 實驗步驟 28 3.2.1 單個圓錐形次微米孔之製備流程 28 3.2.2 鹼性溶液之配製 31 3.2.3 離子傳輸性能實驗步驟 32 3.2.4 滲透能源轉換實驗步驟 32 3.2.5 功能化聚電解質水溶液之配製 33 3.2.6 製備聚電解質功能化的次微米孔道 33 第四章 理論模擬 35 4.1 系統描述 35 4.2 方程式 36 4.2.1 帶高度表面負電荷的圓錐形次微米孔 36 4.2.2 聚電解質功能化的圓錐形次微米孔道 37 4.3 邊界條件 38 4.3.1 帶高度表面負電荷的圓錐形次微米孔 38 4.3.2 聚電解質功能化的圓錐形次微米孔道 39 第五章 結果與討論 41 一、帶高度表面負電荷的單個圓錐形次微米孔道作為離子二極體裝置與超高效滲透能源產生器之實現 41 5.1 圓錐形次微米孔道幾何結構分析 41 5.2 單個圓錐形奈米孔和次微米孔的離子傳輸性能與孔道大小分析 42 5.2.1 單個圓錐形奈米孔的離子傳輸性能與孔道大小分析 42 5.2.2 單個圓錐形次微米孔的離子傳輸性能與孔道大小分析 43 5.3 帶高度表面負電荷的單個圓錐形次微米孔的離子傳輸性能與其離子二極體行為 44 5.3.1 電流-電壓曲線 44 5.3.2 由實驗和理論模擬所得的不同pH值環境下的電流-電壓曲線與表面電荷密度 45 5.3.3 由實驗和模擬所得的離子電流整流比 45 5.4 帶高度表面負電荷的次微米孔作為滲透能源產生器 45 5.4.1 濃度梯度配置 46 5.4.2 氧化還原電位之量測 46 5.4.3 滲透能源轉換相關性能的取得 47 5.4.4 不同濃度梯度下的滲透能源轉換 47 5.5 帶高度表面負電荷的單個圓錐形次微米孔於其他參數調整下的滲透能源轉換的應用 50 5.5.1 不同尖端大小的滲透能源轉換 51 5.5.2 不同pH值下的滲透能源轉換 51 5.5.3 不同電解質水溶液下的滲透能源轉換 52 二、高穩固性之聚電解質功能化次微米孔道作為中尺度離子二極體裝置與超高效滲透能源產生器之實現 53 5.6 單個圓錐形奈米孔和次微米孔的孔道大小分析與離子傳輸性能 53 5.7 聚電解質功能化的單個圓錐形次微米孔的離子傳輸性能與其離子二極體行為 54 5.7.1 製備聚電解質功能化的次微米孔 54 5.7.2 製備聚電解質功能化的次微米孔的電流量測結果與離子電流整流比 54 5.7.3 聚電解質功能化的次微米孔的穩定性與穩固性 55 5.8 聚電解質功能化的單個圓錐形次微米孔作為離子二極體的理論模擬驗證 55 5.9 聚電解質功能化的單個圓錐形次微米孔滲透能源轉換的應用 56 5.9.1 濃度梯度配置 56 5.9.2 氧化還原電位之量測 56 5.9.3 滲透能源轉換相關性能的取得 56 5.9.4 不同濃度梯度下的滲透能源轉換 57 5.9.5 聚電解質功能化的次微米孔作為滲透能源產生器的穩定性測試 58 第六章 結語 105 參考文獻 106

[1] Logan, B. E.; Elimelech, M., Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313-319.
[2] Siria, A.; Bocquet, M.-L.; Bocquet, L., New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.
[3] Yeh, L.-H.; Chen, F.; Chiou, Y.-T.; Su, Y.-S., Anomalous pH-dependent nanofluidic salinity gradient power. Small 2017, 13, 1702691.
[4] Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A., 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588-605.
[5] Gotter, A. L.; Kaetzel, M. A.; Dedman, J. R., Electrophorus electricus as a model system for the study of membrane excitability. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 119, 225-241.
[6] Gyurcsányi, R. E., Chemically-modified nanopores for sensing. Trends Anal. Chem. 2008, 27, 627-639.
[7] Hou, X.; Jiang, L., Learning from nature: building bio-inspired smart nanochannels. ACS Nano 2009, 3, 3339-3342.
[8] Kowalczyk, S. W.; Blosser, T. R.; Dekker, C., Biomimetic nanopores: learning from and about nature. Trends Biotechnol. 2011, 29, 607-614.
[9] Hou, X.; Guo, W.; Jiang, L., Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385-2401.
[10] Hou, X.; Zhang, H.; Jiang, L., Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. Angew. Chem. Int. Ed. 2012, 51, 5296-5307.
[11] de la Escosura-Muñiz, A.; Merkoçi, A., Nanochannels preparation and application in biosensing. ACS Nano 2012, 6, 7556-7583.
[12] Shen, Y.-x.; Saboe, P. O.; Sines, I. T.; Erbakan, M.; Kumar, M., Biomimetic membranes: a review. J. Membr. Sci. 2014, 454, 359-381.
[13] Zhang, H.; Hou, X.; Yang, Z.; Yan, D.; Li, L.; Tian, Y.; Wang, H.; Jiang, L., Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control. Small 2015, 11, 786-791.
[14] Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal. Chem. 2015, 87, 172-187.
[15] Zhang, Z.; Wen, L.; Jiang, L., Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 2018, 47, 322-356.
[16] Mo, D.; Liu, J. D.; Duan, J. L.; Yao, H. J.; Latif, H.; Cao, D. L.; Chen, Y. H.; Zhang, S. X.; Zhai, P. F.; Liu, J., Fabrication of different pore shapes by multi-step etching technique in ion-irradiated pet membranes. Nucl. Instrum. Methods Phys. Res. B 2014, 333, 58-63.
[17] Stein, D.; Kruithof, M.; Dekker, C., Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.
[18] Wei, C.; Bard, A. J.; Feldberg, S. W., Current rectification at quartz nanopipet electrodes. Anal. Chem. 1997, 69, 4627-4633.
[19] Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850-1.
[20] Siwy, Z. S., Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
[21] Vlassiouk, I.; Siwy, Z. S., Nanofluidic diode. Nano Lett. 2007, 7, 552-556.
[22] Karnik, R.; Duan, C.; Castelino, K.; Daiguji, H.; Majumdar, A., Rectification of ionic current in a nanofluidic diode. Nano Lett. 2007, 7, 547-551.
[23] Cheng, L.-J.; Guo, L. J., Nanofluidic diodes. Chem. Soc. Rev. 2010, 39, 923-938.
[24] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J. Am. Chem. Soc. 2009, 131, 2070-2071.
[25] Ali, M.; Ramirez, P.; Mafé, S.; Neumann, R.; Ensinger, W., A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 2009, 3, 603-608.
[26] Hou, X.; Yang, F.; Li, L.; Song, Y.; Jiang, L.; Zhu, D., A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 2010, 132, 11736-11742.
[27] Nasir, S.; Ali, M.; Ramirez, P.; Gómez, V.; Oschmann, B.; Muench, F.; Tahir, M. N.; Zentel, R.; Mafe, S.; Ensinger, W., Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications. ACS Appl. Mater. Interfaces 2014, 6, 12486-12494.
[28] Zhang, Z.; Xie, G.; Xiao, K.; Kong, X.-Y.; Li, P.; Tian, Y.; Wen, L.; Jiang, L., Asymmetric multifunctional heterogeneous membranes for pH- and temperature-cooperative smart ion transport modulation. Adv. Mater. 2016, 28, 9613-9619.
[29] Xiao, K.; Xie, G.; Zhang, Z.; Kong, X.-Y.; Liu, Q.; Li, P.; Wen, L.; Jiang, L., Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv. Mater. 2016, 28, 3345-3350.
[30] Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T., Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713-720.
[31] Zhu, Z.; Wang, D.; Tian, Y.; Jiang, L., Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658-8669.
[32] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic selectivity of single nanochannels. Nano Lett. 2008, 8, 1978-1985.
[33] Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H., Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.
[34] Li, X.; Zhang, H.; Wang, P.; Hou, J.; Lu, J.; Easton, C. D.; Zhang, X.; Hill, M. R.; Thornton, A. W.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Jiang, L.; Wang, H., Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 2019, 10, 2490.
[35] Li, X.; Zhang, H.; Hou, J.; Ou, R.; Zhu, Y.; Zhao, C.; Qian, T.; Easton, C. D.; Selomulya, C.; Hill, M. R.; Wang, H., Sulfonated sub-1-nm metal–organic framework channels with ultrahigh proton selectivity. J. Am. Chem. Soc. 2020, 142, 9827-9833.
[36] Lu, J.; Zhang, H.; Hou, J.; Li, X.; Hu, X.; Hu, Y.; Easton, C. D.; Li, Q.; Sun, C.; Thornton, A. W.; Hill, M. R.; Zhang, X.; Jiang, G.; Liu, J. Z.; Hill, A. J.; Freeman, B. D.; Jiang, L.; Wang, H., Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 2020, 19, 767-774.
[37] Lu, J.; Zhang, H.; Hu, X.; Qian, B.; Hou, J.; Han, L.; Zhu, Y.; Sun, C.; Jiang, L.; Wang, H., Ultraselective monovalent metal ion conduction in a three-dimensional sub-1 nm nanofluidic device constructed by metal–organic frameworks. ACS Nano 2021, 15, 1240-1249.
[38] Liao, T.; Li, X.; Tong, Q.; Zou, K.; Zhang, H.; Tang, L.; Sun, Z.; Zhang, G.-J., Ultrasensitive detection of micrornas with morpholino-functionalized nanochannel biosensor. Anal. Chem. 2017, 89, 5511-5518.
[39] Liu, Y.; Fan, J.; Yang, H.; Xu, E.; Wei, W.; Zhang, Y.; Liu, S., Detection of parp-1 activity based on hyperbranched-poly (adp-ribose) polymers responsive current in artificial nanochannels. Biosens. Bioelectron. 2018, 113, 136-141.
[40] Li, P.; Xie, G.; Liu, P.; Kong, X.-Y.; Song, Y.; Wen, L.; Jiang, L., Light-driven ATP transmembrane transport controlled by DNA nanomachines. J. Am. Chem. Soc. 2018, 140, 16048-16052.
[41] Li, Y.; Xiong, Y.; Wang, D.; Li, X.; Chen, Z.; Wang, C.; Qin, H.; Liu, J.; Chang, B.; Qing, G., Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Mater. 2019, 11, 46.
[42] Liu, N.; Hou, R.; Gao, P.; Lou, X.; Xia, F., Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of dnazyme and DNA supersandwich structures. Analyst 2016, 141, 3626-3629.
[43] Niu, B.; Xiao, K.; Huang, X.; Zhang, Z.; Kong, X.-Y.; Wang, Z.; Wen, L.; Jiang, L., High-sensitivity detection of iron(III) by dopamine-modified funnel-shaped nanochannels. ACS Appl. Mater. Interfaces 2018, 10, 22632-22639.
[44] Zhang, H.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D.; Tian, Y.; Jiang, L., Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102-16110.
[45] Zhang, Z.; Kong, X.-Y.; Xie, G.; Li, P.; Xiao, K.; Wen, L.; Jiang, L., “Uphill” cation transport: a bioinspired photo-driven ion pump. Sci. Adv. 2016, 2, e1600689.
[46] Wanunu, M.; Meller, A., Chemically modified solid-state nanopores. Nano Lett. 2007, 7, 1580-1585.
[47] Xia, F.; Guo, W.; Mao, Y.; Hou, X.; Xue, J.; Xia, H.; Wang, L.; Song, Y.; Ji, H.; Ouyang, Q.; Wang, Y.; Jiang, L., Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 2008, 130, 8345-8350.
[48] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett. 2009, 9, 2788-2793.
[49] Zhang, M.; Hou, X.; Wang, J.; Tian, Y.; Fan, X.; Zhai, J.; Jiang, L., Light and pH cooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. Adv. Mater. 2012, 24, 2424-2428.
[50] Wang, H.; Liu, Q.; Li, W.; Wen, L.; Zheng, D.; Bo, Z.; Jiang, L., Colloidal synthesis of lettuce-like copper sulfide for light-gating heterogeneous nanochannels. ACS Nano 2016, 10, 3606-3613.
[51] Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S., DNA-modified polymer pores allow pH- and voltage-gated control of channel flux. J. Am. Chem. Soc. 2014, 136, 9902-9905.
[52] Shang, X.; Xie, G.; Kong, X.-Y.; Zhang, Z.; Zhang, Y.; Tian, W.; Wen, L.; Jiang, L., An artificial CO2-driven ionic gate inspired by olfactory sensory neurons in mosquitoes. Adv. Mater. 2017, 29, 1603884.
[53] Xiao, K.; Wu, K.; Chen, L.; Kong, X.-Y.; Zhang, Y.; Wen, L.; Jiang, L., Biomimetic peptide-gated nanoporous membrane for on-demand molecule transport. Angew. Chem. Int. Ed. 2018, 57, 151-155.
[54] Zhao, C.; Lu, J.; Hou, J.; Li, X.; Wang, J.; Jiang, L.; Wang, H.; Zhang, H., Bioinspired self-gating nanofluidic devices for autonomous and periodic ion transport and cargo release. Adv. Funct. Mater. 2019, 29, 1806416.
[55] Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M., Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459-464.
[56] Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.; Wanunu, M.; Noy, A., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792-796.
[57] Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.
[58] Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197-200.
[59] Liu, X.; He, M.; Calvani, D.; Qi, H.; Gupta, K. B. S. S.; de Groot, H. J. M.; Sevink, G. J. A.; Buda, F.; Kaiser, U.; Schneider, G. F., Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 2020, 15, 307-312.
[60] Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L., Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system. Sci. Adv. 2018, 4, eaau1665.
[61] Sun, Y.; Dong, T.; Lu, C.; Xin, W.; Yang, L.; Liu, P.; Qian, Y.; Zhao, Y.; Kong, X.-Y.; Wen, L.; Jiang, L., Tailoring a poly(ether sulfone) bipolar membrane: osmotic-energy generator with high power density. Angew. Chem. Int. Ed. 2020, 59, 17423-17428.
[62] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W., Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 2021, 7, eabe9924.
[63] Huang, X.; Kong, X.-Y.; Wen, L.; Jiang, L., Bioinspired ionic diodes: from unipolar to bipolar. Adv. Funct. Mater. 2018, 28, 1801079.
[64] Guo, W.; Cao, L.; Xia, J.; Nie, F.-Q.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339-1344.
[65] Cao, L.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S.; Wang, Y.; Jiang, L.; Zhu, D., Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259-2266.
[66] Balme, S.; Ma, T.; Balanzat, E.; Janot, J.-M., Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications. J. Membr. Sci. 2017, 544, 18-24.
[67] Ma, T.; Balanzat, E.; Janot, J.-M.; Balme, S., Nanopore functionalized by highly charged hydrogels for osmotic energy harvesting. ACS Appl. Mater. Interfaces 2019, 11, 12578-12585.
[68] Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J.-P.; Kis, A.; Radenovic, A., Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549-1564.
[69] Laucirica, G.; Albesa, A. G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W. A.; Azzaroni, O., Shape matters: enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy 2020, 71, 104612.
[70] Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O., Polyaniline for improved blue energy harvesting: highly rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization. ACS Appl. Mater. Interfaces 2020, 12, 28148-28157.
[71] Lin, C.-Y.; Yeh, L.-H.; Siwy, Z. S., Voltage-induced modulation of ionic concentrations and ion current rectification in mesopores with highly charged pore walls. J. Phys. Chem. Lett. 2018, 9, 393-398.
[72] Lin, C.-Y.; Combs, C.; Su, Y.-S.; Yeh, L.-H.; Siwy, Z. S., Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 2019, 141, 3691-3698.
[73] Wu, Y.; Yang, G.; Lin, M.; Kong, X.; Mi, L.; Liu, S.; Chen, G.; Tian, Y.; Jiang, L., Continuously tunable ion rectification and conductance in submicrochannels stemming from thermoresponsive polymer self-assembly. Angew. Chem. Int. Ed. 2019, 58, 12481-12485.
[74] Peng, P.-H.; Ou Yang, H.-C.; Tsai, P.-C.; Yeh, L.-H., Thermal dependence of the mesoscale ionic diode: modeling and experimental verification. ACS Appl. Mater. Interfaces 2020, 12, 17139-17146.
[75] Brown, M. A.; Goel, A.; Abbas, Z., Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 2016, 55, 3790-3794.
[76] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 2002, 35, 2380-2388.
[77] Yeh, L.-H.; Huang, Z.-Y.; Liu, Y.-C.; Deng, M.-J.; Chou, T.-H.; Ou Yang, H.-C.; Ahamad, T.; Alshehri, Saad M.; Wu, K. C. W., A nanofluidic osmotic power generator demonstrated in polymer gel electrolytes with substantially enhanced performance. J. Mater. Chem. A 2019, 7, 26791-26796.
[78] Chen, W.; Zhang, Q.; Qian, Y.; Xin, W.; Hao, D.; Zhao, X.; Zhu, C.; Kong, X.-Y.; Lu, B.; Jiang, L.; Wen, L., Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Cent. Sci. 2020, 6, 2097-2104.
[79] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
[80] Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and voltage gating of ion currents in a nanofabricated pore. EPL 2002, 60, 349-355.
[81] Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. B 2001, 184, 337-346.
[82] Siwy, Z.; Apel, P.; Baur, D.; Dobrev, D. D.; Korchev, Y. E.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K.-O., Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 2003, 532-535, 1061-1066.
[83] Harrell, C. C.; Siwy, Z. S.; Martin, C. R., Conical nanopore membranes: controlling the nanopore shape. Small 2006, 2, 194-198.
[84] Lan, W.-J.; Holden, D. A.; White, H. S., Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 2011, 133, 13300-13303.
[85] Wu, X.; Ramiah Rajasekaran, P.; Martin, C. R., An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 2016, 10, 4637-4643.
[86] Li, P.; Xie, G.; Kong, X.-Y.; Zhang, Z.; Xiao, K.; Wen, L.; Jiang, L., Light-controlled ion transport through biomimetic DNA-based channels. Angew. Chem. Int. Ed. 2016, 55, 15637-15641.
[87] Qian, Y.; Zhang, Z.; Tian, W.; Wen, L.; Jiang, L., A Pb2+ ionic gate with enhanced stability and improved sensitivity based on a 4'-aminobenzo-18-crown-6 modified funnel-shaped nanochannel. Faraday Discuss. 2018, 210, 101-111.
[88] Hsu, J.-P.; Su, T.-C.; Peng, P.-H.; Hsu, S.-C.; Zheng, M.-J.; Yeh, L.-H., Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel. ACS Nano 2019, 13, 13374-13381.
[89] Xiao, K.; Chen, L.; Zhang, Z.; Xie, G.; Li, P.; Kong, X.-Y.; Wen, L.; Jiang, L., A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem. Int. Ed. 2017, 56, 8168-8172.
[90] Xiao, K.; Chen, L.; Xie, G.; Li, P.; Kong, X.-Y.; Wen, L.; Jiang, L., A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification. Nanoscale 2018, 10, 6850-6854.
[91] Ali, M.; Ramirez, P.; Nguyen, H. Q.; Nasir, S.; Cervera, J.; Mafe, S.; Ensinger, W., Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization. ACS Nano 2012, 6, 3631-3640.
[92] Ramírez, P.; Apel, P. Y.; Cervera, J.; Mafé, S., Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology 2008, 19, 315707.
[93] Apel, P. Y.; Blonskaya, I. V.; Orelovitch, O. L.; Dmitriev, S. N., Diode-like ion-track asymmetric nanopores: some alternative methods of fabrication. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 1023-1027.
[94] Pérez-Mitta, G.; Tuninetti, J. S.; Knoll, W.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O., Polydopamine meets solid-state nanopores: a bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes. J. Am. Chem. Soc. 2015, 137, 6011-6017.
[95] Wang, J.; Fang, R.; Hou, J.; Zhang, H.; Tian, Y.; Wang, H.; Jiang, L., Oscillatory reaction induced periodic C-quadruplex DNA gating of artificial ion channels. ACS Nano 2017, 11, 3022-3029.
[96] Qian, T.; Zhang, H.; Li, X.; Hou, J.; Zhao, C.; Gu, Q.; Wang, H., Efficient gating of ion transport in three-dimensional metal–organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem. Int. Ed. 2020, 59, 13051-13056.
[97] Hsu, J.-P.; Su, T.-C.; Lin, C.-Y.; Tseng, S., Power generation from a pH-regulated nanochannel through reverse electrodialysis: effects of nanochannel shape and non-uniform H+ distribution. Electrochim. Acta 2019, 294, 84-92.
[98] Khalid, W.; Habib ur, R.; Akhtar, J., Fabrication and functionalization of nanochannels for sensing applications. Nanosensors for smart cities 2020, 157-169.
[99] Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C., Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 2012, 12, 1038-1044.
[100] Finogenova, O. A.; Batischev, O. V.; Indenbom, A. V.; Zolotarevsky, V. I.; Ermakov, Y. A., Molecular distribution and charge of polylysine layers at the surface of lipid membranes and mica. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2009, 3, 496.
[101] Zhou, T.; Deng, L.; Shi, L.; Li, T.; Zhong, X.; Wen, L., Brush layer charge characteristics of a biomimetic polyelectrolyte-modified nanoparticle surface. Langmuir 2020, 36, 15220-15229.
[102] Pratt, K. W.; Koch, W. F.; Wu, Y. C.; Berezansky, P. A., Molality-based primary standards of electrolytic conductivity. Pure Appl. Chem. 2001, 73, 1783-1793.
[103] Gao, M.; Tsai, P.-C.; Su, Y.-S.; Peng, P.-H.; Yeh, L.-H., Single mesopores with high surface charges as ultrahigh performance osmotic power generators. Small 2020, 16, 2006013.

QR CODE