簡易檢索 / 詳目顯示

研究生: 羅冰瑩
Bin-Ying Lo
論文名稱: 探討氧空缺於 CeO2 (111)表面對於還原性和非還原性 CO2轉化的影響 -密度泛函理論之研究
Mechanistic Insights into Effects of Oxygen Vacancies in CeO2 (111) Surface for Reductive and non-Reductive CO2 Conversion -A DFT study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 游文岳
Wen-Yueh Yu
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 105
中文關鍵詞: 密度泛函理論二氧化鈰二氧化碳轉化過度金屬氧化物氧空缺
外文關鍵詞: Density functional theory, Cerium oxide, CO2 conversion, Metal oxide, Oxygen vacancy
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人類的活動大量排放二氧化碳(CO2),對環境構成重大的威脅,導致全球暖化、海平面上升、自然災害等嚴重問題。因此,如何將CO2轉化為更有價值的產物在近幾年來成為一項重要的議題。根據研究顯示,雖然有許多催化劑可以控制CO2轉化的選擇率,但是CO2的熱穩定性高,因此使用這些催化劑需要較高的能量輸入來克服較高的能量障礙。近年來,CeO2獨特的催化性質在CO2轉化反應中引起了人們關注。在此研究中,我們利用密度泛函理論計算,探討在CeO2(111)表面上CO2的還原性和非還原性轉化。首先,計算了CO2在原始的CeO2(111)表面上進行吸附,結果發現CO2能夠穩定地吸附在CeO2(111)表面,並且獲得大程度的活化,而導致鍵長與鍵角均有明顯的改變。在CO2的還原性轉化中,首先考慮了CO2在原始的CeO2(111)表面直接還原形成CO,計算結果顯示CO2在CeO2(111)表面上直接進行還原在熱力學上是不利的。因此,接著考慮了氫試劑存在於表面的情況,發現在原始表面的RWGS中,C-O斷鍵的反應熱低於直接還原的反應熱。然而,CO2的還原性轉化生成CO,在原始的CeO2(111)表面還是受到較高的反應熱所限制,而不可行。於是,接著考慮了CeO2(111)表面產生氧空缺的反應,發現在有氧空缺的表面,CeO2(111)表面的電子性質改變了,與原始的CeO2(111)表面相比,不論是直接還原或是在RWGS反應都有較低的C-O斷鍵生成CO的反應能障。在非還原性的CO2轉化中,主要研究以CO2和CH3OH合成DMC。結果指出具有氧空缺的CeO2(111)表面是有利於CH3OH吸附的,在接下來的脫氫反應也展現了很低的反應活化能,計算結果顯示整個反應的速率決定步驟為CO2和其鄰近的CH3O基團的C-O鍵耦合生成MMC。最後,這項理論研究中揭示的這些新見解有望為開發用於CO2轉化的高效催化劑提供了非常重要的指南。


The vast emission of carbon dioxide (CO2) by human activities has posed a significant threat to the environment, resulting in some serious problems, such as global warming, rising sea levels, and natural disasters. Therefore, the conversion of CO2 into value-added products has become an important issue in recent days. Several catalysts have been reported to achieve selective control towards CO2 conversion; however, high-energy inputs are required to overcome the large energy barriers in these proposed catalysts because of the high thermal stability of CO2. Recently, CeO2 has risen the attention in CO2 conversion reaction due to its unique catalytic properties. In this study, density functional theory calculations are performed to investigate the reductive and non-reductive CO2 conversion over the CeO2 (111) surface. Initially, the adsorption of CO2 is carried out on the pristine CeO2 (111) surface, and it is found that it can stably adsorb on the CeO2 (111) with a large extent of activation as it shows the great change in the bond length and bond angle. In the reductive CO2 conversion, the direct reduction of CO2 to form CO is considered on the pristine CeO2 (111) surface, and the results indicate that the direct CO2 reduction is thermodynamically unfavorable on the pristine CeO2 (111) surface. Therefore, the presence of hydrogen reagent is taken into consideration. The reaction energy for the C-O bond breaking step in the RWGS reaction is lower than that of the direct reduction. However, the reductive CO2 conversion toward CO formation is unfeasible because of the higher reaction energy. Hence, the mechanism to create the oxygen vacancy on the CeO2 (111) surface is further considered. It is found that the electronic properties of the CeO2 (111) surface change with the presence of the oxygen vacancy, which promotes the lower reaction energy barrier in both direct conversion of CO2 and the RWGS reaction on the defected CeO2 (111) surface than that on the pristine CeO2 (111) surface. In the non-reductive conversion, the DMC synthesis mechanism from CO2 and CH3OH is considered. The defected CeO2 (111) surface is favorable for the adsorption and dehydrogenation of CH3OH as it shows high adsorption for CH3OH and a low activation barrier for further dehydrogenation. Afterward, the reaction mechanisms of CH3OH and CO2 to form DMC and the side product (H2O) formation mechanism are investigated. It is found that the rate-determining step for the overall DMC synthesis mechanism is the C-O coupling step of CO2 and the methoxy group to form the MMC. Finally, these new insights revealed in this theoretical study are expected to provide an essential guideline for developing highly efficient catalysts for CO2 conversion.

Abstract 摘要 Contents List of Figures List of Tables Chapter 1. Introduction 1.1 Carbon dioxide 1.2 Carbon dioxide conversion 1.3 Cerium oxide 1.4 Present study Chapter 2. Theoretical Methodology 2.1 Method 2.2 CeO2 surface model 2.2.1 Bulk 2.2.2 Surface Chapter 3. Reductive Conversion of CO2 3.1 Pristine CeO2 (111) surface 3.1.1 CO2 adsorption on the pristine CeO2 (111) surface 3.1.2 Direct reduction of CO2 on the pristine CeO2 (111) surface 3.1.3 H2 adsorption, dissociation, and diffusion 3.1.4 RWGS reaction on the pristine CeO2 (111) surface 3.2 Defected CeO2 (111) surface 3.2.1 Vacancy formation mechanism 3.2.2 Electronic properties of the defected CeO2 (111) surface 3.2.3 CO2 adsorption on the defected CeO2 (111) surface 3.2.4 Direct reduction of CO2 on the defected CeO2 (111) surface 3.2.5 RWGS reaction on defected CeO2 (111) surface Chapter 4. Non-reductive CO2 conversion 4.1 CH3OH adsorption 4.2 Formation of DMC 4.3 H2O formation 4.3.1 The direct H2O formation mechanism 4.3.2 H2O formation with the presence of CH3O Chapter 5. Conclusion References Appendix

1. Hannah Ritchie, M. R., Co2 Emissions. OurWorldInData.org.
2. United States Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks.
3. Cox, P. M.; Betts, R. A.; Jones, C. D.; Spall, S. A.; Totterdell, I. J., Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184-187.
4. Peer Reviewed: What Future for Carbon Capture and Sequestration? Environmental Science & Technology 2001, 35, 148A-153A.
5. Chu, S., Carbon Capture and Sequestration. Science 2009, 325, 1599.
6. Barron, A. R., Chemistry of the Main Group Elements. 2014.
7. Zheng, Y.; Zhang, W.; Li, Y.; Chen, J.; Yu, B.; Wang, J.; Zhang, L.; Zhang, J., Energy Related Co2 Conversion and Utilization: Advanced Materials/Nanomaterials, Reaction Mechanisms and Technologies. Nano Energy 2017, 40, 512-539.
8. Martín, A. J.; Larrazábal, G. O.; Pérez-Ramírez, J., Towards Sustainable Fuels and Chemicals through the Electrochemical Reduction of Co2: Lessons from Water Electrolysis. Green Chemistry 2015, 17, 5114-5130.
9. Chang, K.; Zhang, H.; Cheng, M.-j.; Lu, Q., Application of Ceria in Co2 Conversion Catalysis. ACS Catalysis 2019, 10, 613-631.
10. Kattel, S.; Liu, P.; Chen, J. G., Tuning Selectivity of Co2 Hydrogenation Reactions at the Metal/Oxide Interface. Journal of the American Chemical Society 2017, 139, 9739-9754.
11. Ra, E. C.; Kim, K. Y.; Kim, E. H.; Lee, H.; An, K.; Lee, J. S., Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catalysis 2020, 10, 11318-11345.
12. Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C., A Cobalt-Based Catalyst for the Hydrogenation of Co2 under Ambient Conditions. Journal of the American Chemical Society 2013, 135, 11533-11536.
13. Farlow, M. W.; Adkins, H. J. J. o. t. A. C. S., The Hydrogenation of Carbon Dioxide and a Correction of the Reported Synthesis of Urethans. 1935, 57, 2222-2223.
14. Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G., Recent Advances in Carbon Dioxide Hydrogenation to Methanol Via Heterogeneous Catalysis. Chemical Reviews 2020, 120, 7984-8034.
15. Kim, S. S.; Lee, H. H.; Hong, S. C., The Effect of the Morphological Characteristics of Tio2 Supports on the Reverse Water–Gas Shift Reaction over Pt/Tio2 Catalysts. Applied Catalysis B: Environmental 2012, 119-120, 100-108.
16. Goguet, A.; Shekhtman, S. O.; Burch, R.; Hardacre, C.; Meunier, F. C.; Yablonsky, G. S., Pulse-Response Tap Studies of the Reverse Water–Gas Shift Reaction over a Pt/Ceo2 Catalyst. Journal of Catalysis 2006, 237, 102-110.
17. Goguet, A.; Meunier, F.; Breen, J. P.; Burch, R.; Petch, M. I.; Faur Ghenciu, A., Study of the Origin of the Deactivation of a Pt/Ceo2 Catalyst During Reverse Water Gas Shift (Rwgs) Reaction. Journal of Catalysis 2004, 226, 382-392.
18. Kim, S. S.; Lee, H. H.; Hong, S. C., A Study on the Effect of Support's Reducibility on the Reverse Water-Gas Shift Reaction over Pt Catalysts. Applied Catalysis A: General 2012, 423-424, 100-107.
19. Porosoff, M. D.; Chen, J. G., Trends in the Catalytic Reduction of Co2 by Hydrogen over Supported Monometallic and Bimetallic Catalysts. Journal of Catalysis 2013, 301, 30-37.
20. Porosoff, M. D.; Yang, X.; Boscoboinik, J. A.; Chen, J. G. J. A. C. I. E., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of Co2 to Co. 2014, 53, 6705-6709.
21. Behrens, M., et al., The Active Site of Methanol Synthesis over Cu/Zno/Al≪Sub≫2≪/Sub≫O≪Sub≫3≪/Sub≫ Industrial Catalysts. Science 2012, 336, 893.
22. Kattel, S.; Yu, W.; Yang, X.; Yan, B.; Huang, Y.; Wan, W.; Liu, P.; Chen, J. G. J. A. C. I. E., Co2 Hydrogenation over Oxide‐Supported Ptco Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. 2016, 55, 7968-7973.
23. Frei, M. S.; Capdevila-Cortada, M.; García-Muelas, R.; Mondelli, C.; López, N.; Stewart, J. A.; Curulla Ferré, D.; Pérez-Ramírez, J., Mechanism and Microkinetics of Methanol Synthesis Via Co2 Hydrogenation on Indium Oxide. Journal of Catalysis 2018, 361, 313-321.
24. Martin, O.; Martín, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla‐Ferré, D.; Pérez‐Ramírez, J. J. A. C. I. E., Indium Oxide as a Superior Catalyst for Methanol Synthesis by Co2 Hydrogenation. 2016, 55, 6261-6265.
25. Dang, S.; Qin, B.; Yang, Y.; Wang, H.; Cai, J.; Han, Y.; Li, S.; Gao, P.; Sun, Y. J. S. a., Rationally Designed Indium Oxide Catalysts for Co2 Hydrogenation to Methanol with High Activity and Selectivity. 2020, 6, eaaz2060.
26. Rahmani, S.; Rezaei, M.; Meshkani, F. J. J. o. I.; Chemistry, E., Preparation of Highly Active Nickel Catalysts Supported on Mesoporous Nanocrystalline Γ-Al2o3 for Co2 Methanation. 2014, 20, 1346-1352.
27. Karelovic, A.; Ruiz, P., Mechanistic Study of Low Temperature Co2 Methanation over Rh/Tio2 Catalysts. Journal of Catalysis 2013, 301, 141-153.
28. Sharma, S.; Hu, Z.; Zhang, P.; McFarland, E. W.; Metiu, H., Co2 Methanation on Ru-Doped Ceria. Journal of Catalysis 2011, 278, 297-309.
29. Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.; Zhang, Y.-W., Low-Temperature Co2 Methanation over Ceo2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catalysis 2018, 8, 6203-6215.
30. Kwak, J. H.; Kovarik, L.; Szanyi, J., Heterogeneous Catalysis on Atomically Dispersed Supported Metals: Co2 Reduction on Multifunctional Pd Catalysts. ACS Catalysis 2013, 3, 2094-2100.
31. Shin, H. H.; Lu, L.; Yang, Z.; Kiely, C. J.; McIntosh, S., Cobalt Catalysts Decorated with Platinum Atoms Supported on Barium Zirconate Provide Enhanced Activity and Selectivity for Co2 Methanation. ACS Catalysis 2016, 6, 2811-2818.
32. Daza, Y. A.; Kuhn, J. N., Co2conversion by Reverse Water Gas Shift Catalysis: Comparison of Catalysts, Mechanisms and Their Consequences for Co2conversion to Liquid Fuels. RSC Advances 2016, 6, 49675-49691.
33. Joo, O.-S.; Jung, K.-D.; Moon, I.; Rozovskii, A. Y.; Lin, G. I.; Han, S.-H.; Uhm, S.-J., Carbon Dioxide Hydrogenation to Form Methanol Via a Reverse-Water-Gas-Shift Reaction (the Camere Process). Industrial & Engineering Chemistry Research 1999, 38, 1808-1812.
34. Park, S.; Chang, J.; Lee, K.; Joo, O.; Jung, K.; Jung, Y. J. S. i. S. S.; Catalysis, Camere Process for Methanol Synthesis from Co2 Hydrogenation. 2004, 153, 67-72.
35. Park, S.-W.; Joo, O.-S.; Jung, K.-D.; Kim, H.; Han, S.-H., Development of Zno/Al2o3 Catalyst for Reverse-Water-Gas-Shift Reaction of Camere (Carbon Dioxide Hydrogenation to Form Methanol Via a Reverse-Water-Gas-Shift Reaction) Process. Applied Catalysis A: General 2001, 211, 81-90.
36. Kaiser, P.; Unde, R. B.; Kern, C.; Jess, A., Production of Liquid Hydrocarbons with Co2 as Carbon Source Based on Reverse Water-Gas Shift and Fischer-Tropsch Synthesis. Chemie Ingenieur Technik 2013, 85, 489-499.
37. González-Castaño, M.; Dorneanu, B.; Arellano-García, H., The Reverse Water Gas Shift Reaction: A Process Systems Engineering Perspective. Reaction Chemistry & Engineering 2021, 6, 954-976.
38. Marchese, M.; Giglio, E.; Santarelli, M.; Lanzini, A., Energy Performance of Power-to-Liquid Applications Integrating Biogas Upgrading, Reverse Water Gas Shift, Solid Oxide Electrolysis and Fischer-Tropsch Technologies. Energy Conversion and Management: X 2020, 6, 100041.
39. Tomishige, K.; Tamura, M.; Nakagawa, Y., Co2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over Ceo2 Catalyst in the Presence and Absence of 2-Cyanopyridine. The Chemical Record 2019, 19, 1354-1379.
40. Fang, S.; Fujimoto, K., Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol Catalyzed by Base. Applied Catalysis A: General 1996, 142, L1-L3.
41. Esan, A. O.; Adeyemi, A. D.; Ganesan, S., A Review on the Recent Application of Dimethyl Carbonate in Sustainable Biodiesel Production. Journal of Cleaner Production 2020, 257, 120561.
42. Fiorani, G.; Perosa, A.; Selva, M., Dimethyl Carbonate: A Versatile Reagent for a Sustainable Valorization of Renewables. Green Chemistry 2018, 20, 288-322.
43. Tundo, P.; Musolino, M.; Aricò, F., The Reactions of Dimethyl Carbonate and Its Derivatives. Green Chemistry 2018, 20, 28-85.
44. Delledonne, D.; Rivetti, F.; Romano, U., Developments in the Production and Application of Dimethylcarbonate. Applied Catalysis A: General 2001, 221, 241-251.
45. Puértolas, B.; Rellán-Piñeiro, M.; Núñez-Rico, J. L.; Amrute, A. P.; Vidal-Ferran, A.; López, N.; Pérez-Ramírez, J.; Wershofen, S., Mechanistic Insights into the Ceria-Catalyzed Synthesis of Carbamates as Polyurethane Precursors. ACS Catalysis 2019, 9, 7708-7720.
46. Kreye, O.; Mutlu, H.; Meier, M. A. R., Sustainable Routes to Polyurethane Precursors. Green Chemistry 2013, 15.
47. Laursen, S.; Combita, D.; Hungría, A. B.; Boronat, M.; Corma, A. J. A. C. I. E., First‐Principles Design of Highly Active and Selective Catalysts for Phosgene‐Free Synthesis of Aromatic Polyurethanes. 2012, 51, 4190-4193.
48. Huang, S.; Yan, B.; Wang, S.; Ma, X., Recent Advances in Dialkyl Carbonates Synthesis and Applications. Chem Soc Rev 2015, 44, 3079-116.
49. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P., Fundamentals and Catalytic Applications of Ceo2-Based Materials. Chem Rev 2016, 116, 5987-6041.
50. Farrukh, M. A., Functionalized Nanomaterials; IntechOpen, 2016.
51. Choudhury, B.; Choudhury, A., Ce3+ and Oxygen Vacancy Mediated Tuning of Structural and Optical Properties of Ceo2 Nanoparticles. Materials Chemistry and Physics 2012, 131, 666-671.
52. Sun, C.; Li, H.; Chen, L. J. E.; Science, E., Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications. 2012, 5, 8475-8505.
53. Vanpoucke, D. E.; Bultinck, P.; Cottenier, S.; Van Speybroeck, V.; Van Driessche, I. J. J. o. M. C. A., Aliovalent Doping of Ceo 2: Dft Study of Oxidation State and Vacancy Effects. 2014, 2, 13723-13737.
54. Nolan, M., Charge Compensation and Ce3+ Formation in Trivalent Doping of the Ceo2(110) Surface: The Key Role of Dopant Ionic Radius. The Journal of Physical Chemistry C 2011, 115, 6671-6681.
55. Babu, S.; Thanneeru, R.; Inerbaev, T.; Day, R.; Masunov, A. E.; Schulte, A.; Seal, S. J. N., Dopant-Mediated Oxygen Vacancy Tuning in Ceria Nanoparticles. 2009, 20, 085713.
56. Dai, B.; Cao, S.; Xie, H.; Zhou, G.; Chen, S., Reduction of Co2 to Co Via Reverse Water-Gas Shift Reaction over Ceo2 Catalyst. Korean Journal of Chemical Engineering 2018, 35, 421-427.
57. Liu, Y.; Li, Z.; Xu, H.; Han, Y., Reverse Water–Gas Shift Reaction over Ceria Nanocube Synthesized by Hydrothermal Method. Catalysis Communications 2016, 76, 1-6.
58. Yang, S.-C.; Su, W.-N.; Rick, J.; Lin, S. D.; Liu, J.-Y.; Pan, C.-J.; Lee, J.-F.; Hwang, B.-J., Oxygen Vacancy Engineering of Cerium Oxides for Carbon Dioxide Capture and Reduction. ChemSusChem 2013, 6, 1326-1329.
59. Tamboli, A. H.; Chaugule, A. A.; Kim, H., Catalytic Developments in the Direct Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol. Chemical Engineering Journal 2017, 323, 530-544.
60. Marin, C. M.; Li, L.; Bhalkikar, A.; Doyle, J. E.; Zeng, X. C.; Cheung, C. L., Kinetic and Mechanistic Investigations of the Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide over Ceria Nanorod Catalysts. Journal of Catalysis 2016, 340, 295-301.
61. Santos, B. A. V.; Pereira, C. S. M.; Silva, V. M. T. M.; Loureiro, J. M.; Rodrigues, A. E., Kinetic Study for the Direct Synthesis of Dimethyl Carbonate from Methanol and Co2 over Ceo2 at High Pressure Conditions. Applied Catalysis A: General 2013, 455, 219-226.
62. Aresta, M.; Dibenedetto, A.; Pastore, C.; Angelini, A.; Aresta, B.; Pápai, I., Influence of Al2o3 on the Performance of Ceo2 Used as Catalyst in the Direct Carboxylation of Methanol to Dimethylcarbonate and the Elucidation of the Reaction Mechanism. Journal of Catalysis 2010, 269, 44-52.
63. Marciniak, A. A.; Alves, O. C.; Appel, L. G.; Mota, C. J. A., Synthesis of Dimethyl Carbonate from Co2 and Methanol over Ceo2: Role of Copper as Dopant and the Use of Methyl Trichloroacetate as Dehydrating Agent. Journal of Catalysis 2019, 371, 88-95.
64. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6, 15-50.
65. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B 1996, 54, 11169-11186.
66. Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B 1993, 47, 558-561.
67. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251-14269.
68. Blochl, P. E., Projector Augmented-Wave Method. Phys Rev B Condens Matter 1994, 50, 17953-17979.
69. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B 1999, 59, 1758-1775.
70. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
71. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters 1997, 78, 1396-1396.
72. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P., Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An Lsda+U Study. Physical Review B 1998, 57, 1505-1509.
73. Capdevila-Cortada, M.; López, N., Descriptor Analysis in Methanol Conversion on Doped Ceo2(111): Guidelines for Selectivity Tuning. ACS Catalysis 2015, 5, 6473-6480.
74. Wu, T.; Vegge, T.; Hansen, H. A., Improved Electrocatalytic Water Splitting Reaction on Ceo2(111) by Strain Engineering: A Dft+U Study. ACS Catalysis 2019, 9, 4853-4861.
75. McFarland, E. W.; Metiu, H., Catalysis by Doped Oxides. Chemical Reviews 2013, 113, 4391-4427.
76. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Physical Review B 2011, 83, 195131.
77. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical Accuracy for the Van Der Waals Density Functional. Journal of Physics: Condensed Matter 2009, 22, 022201.
78. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical Review B 1976, 13, 5188-5192.
79. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal of Chemical Physics 2000, 113, 9901-9904.
80. Gerward, L.; Staun Olsen, J.; Petit, L.; Vaitheeswaran, G.; Kanchana, V.; Svane, A., Bulk Modulus of Ceo2 and Pro2—an Experimental and Theoretical Study. Journal of Alloys and Compounds 2005, 400, 56-61.
81. Arumugam, A.; Karthikeyan, C.; Haja Hameed, A. S.; Gopinath, K.; Gowri, S.; Karthika, V., Synthesis of Cerium Oxide Nanoparticles Using Gloriosa Superba L. Leaf Extract and Their Structural, Optical and Antibacterial Properties. Mater Sci Eng C Mater Biol Appl 2015, 49, 408-415.
82. Sharma, A., Effect of Synthesis Routes on Microstructure of Nanocrystalline Cerium Oxide Powder. Materials Sciences and Applications 2013, 04, 504-508.
83. <1-S2.0-S0926860x01007967-Main.Pdf>.
84. Védrine, J., Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7.
85. Bader, R. F. J. A. o. C. R., Atoms in Molecules. 1985, 18, 9-15.
86. Bader, R. F.; Nguyen-Dang, T., Quantum Theory of Atoms in Molecules–Dalton Revisited. In Advances in Quantum Chemistry, Elsevier: 1981; Vol. 14, pp 63-124.
87. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. J. o. c. c., Improved Grid‐Based Algorithm for Bader Charge Allocation. 2007, 28, 899-908.
88. Lu, X.; Wang, W.; Wei, S.; Guo, C.; Shao, Y.; Zhang, M.; Deng, Z.; Zhu, H.; Guo, W., Initial Reduction of Co2 on Perfect and O-Defective Ceo2 (111) Surfaces: Towards Co or Cooh? RSC Advances 2015, 5, 97528-97535.
89. Freund, H. J.; Roberts, M. W., Surface Chemistry of Carbon Dioxide. Surface Science Reports 1996, 25, 225-273.
90. Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R., Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/Ceo2 Catalyst. The Journal of Physical Chemistry B 2004, 108, 20240-20246.
91. Plakhova, T. V., et al., Towards the Surface Hydroxyl Species in Ceo2 Nanoparticles. Nanoscale 2019, 11, 18142-18149.
92. García-Melchor, M.; López, N., Homolytic Products from Heterolytic Paths in H2 Dissociation on Metal Oxides: The Example of Ceo2. The Journal of Physical Chemistry C 2014, 118, 10921-10926.
93. Zhang, W.; Ma, X.-L.; Xiao, H.; Lei, M.; Li, J., Mechanistic Investigations on Thermal Hydrogenation of Co2 to Methanol by Nanostructured Ceo2(100): The Crystal-Plane Effect on Catalytic Reactivity. The Journal of Physical Chemistry C 2019, 123, 11763-11771.
94. Staudt, T.; Lykhach, Y.; Tsud, N.; Skála, T.; Prince, K. C.; Matolín, V.; Libuda, J., Ceria Reoxidation by Co2: A Model Study. Journal of Catalysis 2010, 275, 181-185.
95. Ren, X.; Zhang, Z.; Wang, Y.; Lu, J.; An, J.; Zhang, J.; Wang, M.; Wang, X.; Luo, Y., Capping Experiments Reveal Multiple Surface Active Sites in Ceo2 and Their Cooperative Catalysis. RSC Advances 2019, 9, 15229-15237.
96. Sutton, J. E.; Overbury, S. H.; Beste, A., Coadsorbed Species Explain the Mechanism of Methanol Temperature-Programmed Desorption on Ceo2(111). The Journal of Physical Chemistry C 2016, 120, 7241-7247.

無法下載圖示 全文公開日期 2026/08/26 (校內網路)
全文公開日期 2026/08/26 (校外網路)
全文公開日期 2026/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE