簡易檢索 / 詳目顯示

研究生: 嵇煥文
Huan-Wen Chi
論文名稱: 開發自動化拉曼量測系統並結合主成分分析辨別真假酒
Development of Automated Raman Measurement System and Uses Principal Component Analysis to Classify Real and Counterfeit Liquor
指導教授: 林鼎晸
Ding-Zheng Lin
口試委員: 陳品銓
Pin-Chuan Chen
黃念祖
Nien-Tsu Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 128
中文關鍵詞: 拉曼偽造自動化主成分分析
外文關鍵詞: Raman, counterfeit, automation, principal component analysis
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標為開發客製化設計的自動化拉曼量測平台,可應用於同一種容器不同種溶液之量測。系統之主要硬體包括21系列黑白相機、步進馬達、STM32F302R8微控制器開發板以及STM32 L6470微步進馬達驅動板等;系統軟體則利用NI公司的 LabVIEW 2015 做為開發工具,將自動化量測流程進行整合。透過直觀的人機介面設計,操作者只要輸入少許參數設定以及簡易的按鈕操作,系統將會自動進行陣列量測裝有酒精飲品的溶液以及裝有甲醇的溶液。
    本研究將量測多種裝有酒精飲品的溶液以及裝有甲醇的酒精飲品,再將量測完成之數據透過主成分分析進行判斷,藉此得知所有溶液之差異。


    This study mainly develops an automated Raman measurement platform for the customized design of various solution containers. The system hardware mainly includes a 532nm Laser, a spectrometer, a CCD camera, a stepper motor, a microcontroller evaluation board (STM32, F302R8),and a micro stepper motor driver board (STM32, L6470)...etc. We used the software LabVIEW to integrate the entire automated measurement process. By designing the intuitional human-machine interface, the user only needs to input a few setting parameters and can efficiently operate the machine to automation mode for an array of solutions containing real or counterfeit liquor, such as kaoliang liquor, Vodka, Rum, Gin, rice wine, ethanol, and methanol.
    In this study, a variety of alcoholic beverage solutions will be measured and analyzed by the principal component analysis (PCA) method to distinguish the little difference between different types of liquor solutions from Raman spectra.

    中文摘要 III Abstract IV 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 拉曼散射(Raman scattering)的發展與原理 1 1.2 紅外線光譜與拉曼光譜的選擇 5 1.3 食品類自動化拉曼量測系統 8 1.4 酒精飲品 10 1.5 研究動機 11 第二章 自動化拉曼量測系統架設 12 2.1 光學元件組 16 2.1.1 光學元件介紹 17 2.1.2 光路系統 19 2.2 運動控制模組 21 2.2.1 X軸電動平台及Y軸電動平台 21 2.2.2 自製酒瓶置具 22 2.3 電控系統 23 2.4 系統整合 24 第三章 系統軟體程序 27 3.1 軟體工具 27 3.2 軟體介紹 27 3.3 人機介面及系統運作流程 28 3.4主成分分析 36 3.4.1 主成分分析數學計算 36 第四章 實驗材料製備 39 4.1 乙醇及甲醇製備 39 4.1.1 乙醇 39 4.1.2 甲醇 39 4.2 假酒製備 39 4.2.1 Vodka與甲醇製備 40 4.2.2 紅標純米酒與甲醇製備 42 4.3 市售酒製備 43 4.4 溶液量測 46 第五章 實驗結果與討論 47 5.1 乙醇標準濃度曲線 47 5.2 甲醇標準濃度曲線 54 5.3 假Vodka實驗 59 5.4 假紅標純米酒實驗 67 5.5 市售酒分類實驗 73 5.6 市售酒與乙醇溶液分類實驗 81 第六章 結論與未來展望 88 6.1 結論 88 6.2 未來展望 89 參考文獻 91 附件一 96 附件二 102 附件三 106 附件四 108 附件五 110 附件六 111 附件七 112

    1. Ferraro, J. R., Nakamoto, K. & Brown, C. W. Introductory Raman spectroscopy. (Academic Press, 2003).
    2. Campanella, B., Palleschi, V. & Legnaioli, S. Introduction to vibrational spectroscopies. ChemTexts 7, (2021).
    3. Asher, S. A. for Analytical, Physical, and Biophysical Chemistry. 6.
    4. Farber, C. et al. Complementarity of Raman and Infrared Spectroscopy for Structural Characterization of Plant Epicuticular Waxes. ACS Omega 4, 3700–3707 (2019).
    5. J. Qin, K. Chao, & M. S. Kim. Raman Chemical Imaging System for Food Safety and Quality Inspection. Transactions of the ASABE 53, 1873–1882 (2010).
    6. Arthur, J. W. & Lockwood, D. J. Automation techniques for Raman spectroscopy. J. Raman Spectrosc. 2, 53–69 (1974).
    7. Doughty, D. C. & Hill, S. C. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol. Journal of Quantitative Spectroscopy and Radiative Transfer 188, 103–117 (2017).
    8. 菸酒管理法. 財政部國庫署 vol. 10600157011 (89.04.19).
    9. Solodun, Y. et al. Unrecorded alcohol consumption in Russia: toxic denaturants and disinfectants pose additional risks. Interdisciplinary Toxicology 4, 198–205 (2011).
    10. Solgi, R., Taheri-Kamalan, L., Larki-Harchegani, A. & Nili-Ahmadabadi, A. Increased production of illegal alcoholic beverages during the COVID-19 pandemic in Hamadan, Iran. Forensic Toxicol 39, 518–521 (2021).
    11. 謝牧樵. 微光致螢光量測系統之研製. (國立臺灣科技大學碩博士論文, 2011).
    12. National Instruments,檢自. https://www.ni.com/zh-tw.html.
    13. National Instruments 圖形化的優點,檢自. https://www.ni.com/zh-tw/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html.
    14. Abdi, H. & Williams, L. J. Principal component analysis: Principal component analysis. WIREs Comp Stat 2, 433–459 (2010).
    15. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2, 37–52 (1987).
    16. Duhok Polytechnic University, Salih Hasan, B. M., Abdulazeez, A. M., & Duhok Polytechnic University. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. JSCDM 02, (2021).
    17. Jolliffe, Ian T. Principal component analysis for special types of data. (2003).
    18. Shlens, J. A Tutorial on Principal Component Analysis. 13.
    19. Rana, D., Jena, S. P. & Pradhan, S. K. Performance Comparison of PCA and LDA with Linear Regression and Random Forest for IRIS Flower Classification. 8 (2020).
    20. Hui, Z. & Honggeng, Y. Application of Weighted Principal Component Analysis in Comprehensive Evaluation for Power Quality. 4.
    21. Barnett, R. M. Principal Component Analysis. 11.
    22. Smaragdis, P. Shift-Invariant Probabilistic Latent Component Analysis. 29.
    23. Khodasevich, M. A. et al. Identification of Counterfeit Alcoholic Beverages Using Cluster Analysis in Principal-Component Space. J Appl Spectrosc 84, 517–520 (2017).
    24. 假紅標米酒,檢自. https://news.cts.com.tw/cts/society/201001/201001190392652.html.
    25. 酒類衛生標準. 財政部國庫署 vol. 10503773520 (93.06.29).
    26. Vaskova, H. Spectroscopic Determination of Methanol Content in Alcoholic Drinks. 9.
    27. Vašková, H. & Tomeček, M. Rapid spectroscopic measurement of methanol in water-ethanol-methanol mixtures. MATEC Web Conf. 210, 02035 (2018).
    28. Emin, A., Hushur, A. & Mamtimin, T. Raman study of mixed solutions of methanol and ethanol. AIP Advances 10, 065330 (2020).
    29. Li, F. et al. Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 189, 621–624 (2018).
    30. Nose, A. & Hojo, M. Hydrogen bonding of water–ethanol in alcoholic beverages. Journal of Bioscience and Bioengineering 102, 269–280 (2006).
    31. Beta, I. A. & Sorensen, C. M. Quantitative Information about the Hydrogen Bond Strength in Dilute Aqueous Solutions of Methanol from the Temperature Dependence of the Raman Spectra of the Decoupled OD Stretch. J. Phys. Chem. A 109, 7850–7853 (2005).
    32. Dolenko, T. A. et al. Raman Spectroscopy of Water–Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions. J. Phys. Chem. A 119, 10806–10815 (2015).
    33. Yang, B., Cao, X., Lang, H., Wang, S. & Sun, C. Study on hydrogen bonding network in aqueous methanol solution by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 225, 117488 (2020).
    34. Burikov, S., Dolenko, T., Patsaeva, S., Starokurov, Y. & Yuzhakov, V. Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol. Phys. 108, 2427–2436 (2010).
    35. Zhang, S. et al. Raman spectroscopy study of acetonitrile at low temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246, 119065 (2021).
    36. Nose, A., Myojin, M., Hojo, M., Ueda, T. & Okuda, T. Proton nuclear magnetic resonance and Raman spectroscopic studies of Japanese sake, an alcoholic beverage. Journal of Bioscience and Bioengineering 99, 493–501 (2005).
    37. Berghian-Grosan, C. & Magdas, D. A. Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination. Sci Rep 10, 21152 (2020).
    38. Li, L. et al. Recent Developments in Surface-Enhanced Raman Spectroscopy and Its Application in Food Analysis: Alcoholic Beverages as an Example. Foods 11, 2165 (2022).
    39. Wu, Z. et al. Highly sensitive determination of ethyl carbamate in alcoholic beverages by surface-enhanced Raman spectroscopy combined with a molecular imprinting polymer. RSC Adv. 6, 109442–109452 (2016).
    40. Qi, H., Chen, H., Wang, Y. & Jiang, L. Detection of ethyl carbamate in liquors using surface-enhanced Raman spectroscopy. R. Soc. open sci. 5, 181539 (2018).

    無法下載圖示 全文公開日期 2026/08/18 (校內網路)
    全文公開日期 2026/08/18 (校外網路)
    全文公開日期 2026/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE