簡易檢索 / 詳目顯示

研究生: 謝旻紘
Min-Hung Hsieh
論文名稱: 應用於多層電路板之多模態激發交錯式電磁能隙架構寬頻同步切換雜訊抑制設計
Multi-mode Excitation Interleaved EBG Structure for Broadband Suppression of SSN in Multilayer PCBs
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 吳宗霖
Tzong-Lin Wu
曾昭雄
Chao-Hsiung Tseng
邱政男
Cheng-Nan Chiu
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 同步切換雜訊電源輸送網路多層印刷電路板電磁能隙週期性結構電源完整性
外文關鍵詞: Simultaneous Switching Noise, Power Delivery Network, Multi-layer Printed Circuit Board, Electromagnetic bandgap, Periodic Structure, Power Integrity
相關次數: 點閱:361下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究在多層電路設計中,因數位IC本身快速切換產生的瞬時電流,進而在另一端的類比IC產生同步切換雜訊(Simultaneous Switching Noise)。此雜訊會在電源輸送網路(Power Delivery Network, PDN)中傳播,使整個系統電路的電源完整性(Power integrity, PI)受到影響。而在本文中,主要的多層印刷電路板(Multi-layer Printed Circuit Board)設計中心理念是透過週期性(Periodic Structure)的交錯式電磁能隙 (Interleaved EBG)結構,並改變此結構的板材厚度,來達到阻抗不連續的特性,增加其隔離度。接著嵌入槽線(Slot Line),使其架構產生多模態的激發,藉此得到寬頻抑制的效果。從頻域上觀察,此架構在5×5的週期性結構中頻寬範圍從0.56 GHz至20 GHz皆抑制於-40 dB以下,僅7.24 GHz此單一頻率點特性較差。另外,因為週期性結構的特性,使其在任意位置都有良好的隔離效果。


This thesis mainly studies the instantaneous current is generated by the high clock switching of the digital device in the multilayer printed circuit board, and then brings the simultaneous switching noise (SSN) in the analog device or sensitivity device. The SSN propagates through the power delivery network (PDN) which affects the power integrity (PI) of the system circuit. In this research, the main idea of the circuit design is the periodic structure of interleaved EBG structure. Then change the thickness of the structure to achieve the impedance discontinuity and increase its isolation. Next, the slot line is embedded in the inner layer to create the multi-mode excitation. Thereby getting the broadband suppression. From the frequency domain observation, the bandwidth of this architecture can efficiently suppress the SSN below -40 dB from 0.56 GHz to 20 GHz in the 5×5 periodic structure, and only a single frequency point characteristic of the 7.24 GHz is relatively poor. In addition, due to the characteristics of the periodic structure, it has a good isolation effect at any position.

摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 3 1.2.1去耦合電容元件 3 1.2.2傳輸線帶拒架構 4 1.2.3電磁能隙架構 5 1.3 論文架構 7 第二章 同步切換雜訊及電路設計基礎原理 8 2.1同步雜訊切換雜訊的成因及原理 8 2.2同步切換雜訊產生的相關案例 9 2.3電路設計基礎理論 11 2.3.1傳輸線原理 11 2.3.2耦合微帶傳輸線原理 13 2.3.3微波濾波器 17 2.3.4週期性(Periodic Structure)結構 21 2.3.5電磁能隙(Electromagnetic Bandgap)結構 25 第三章 寬頻同步切換雜訊抑制設計 28 3.1概述 28 3.2多層電路板寬頻雜訊抑制設計 31 3.2.1交錯式電磁能隙架構設計與分析 31 3.2.2板材厚度調整及參數分析 36 3.2.3槽線(Slot Line)嵌入設計與分析 40 3.2.4所提出之多模態激發交錯式電磁能隙架構設計與分析 43 第四章 模擬與實測結果討論 46 第五章 結論 50 參考文獻 51

[1] M. S. Sharawi, “Practical issues in high speed PCB design,” IEEE Potentials, Vol. 23. No. 2, 24-27, Apr. /May 2004.
[2] M. Swaminathan and A. Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems. Englewood Cliffs, NJ: Prentice-Hall, 2007.
[3] L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc, and T. Roy,“Power distribution system design methodology and capacitor selection for modern CMOS technology,” IEEE Trans. Adv. Package, vol. 22, pp.284–291, 1999.
[4] W.-H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw.Theory Tech., vol. 54, no. 6, pp. 2497–2502, Jun. 2006.
[5] Jie Qin, Omar M. Ramahi, Victor Granatstein, “Novel Planar Electromagnetic Bandgap Structures for Mitigation of Switching Noise and EMI Reduction in High-Speed Circuits,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3, pp. 661–669, Aug. 2007.
[6] Mu-Shui Zhang, Yu-Shan Li, Chen Jia, Li-Ping Li, and Jian Pan, "A Double-Surface Electromagnetic Bandgap Structure With One Surface Embedded in Power Plane for Ultra-Wideband SSN Suppression," IEEE Microw. Wireless Compon. Lett. vol. 17, no. 10, pp. 646-648, Oct. 2007.
[7] T. Kamgaing; O. M. Ramahi, “Design and Modeling of High-Impedance Electromagnetic Surfaces for Switching Noise Suppression in Power Planes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 479–489, Aug. 2007.
[8] Jianjie Li, Junfa Mao, Min Tang, “Mushroom-Type Ground Plane Structure for Wideband SSN Suppression in High-Speed Circuits,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 12, pp. 646–648, Dec. 2011.
[9] Chuen-De Wang, Tzong-Lin Wu, “Model and Mechanism of Miniaturized and Stopband-Enhanced Interleaved EBG Structure for Power/Ground Noise Suppression,” IEEE Trans. Electromagn. Compat., vol. 55, no. 1 pp. 159–167, Feb. 2013.
[10] Christian Schuster, Distinguished Lecturer for the IEEE EMC Society 2012-13.
[11] B. D. Jarvis, “The effects of interconnections on high-speed logic circuits,” IEEE Trans. Electron. Comput., vol. 12, no. 5, pp. 476-487, Oct. 1963.
[12] Z. L.Wang, O.Wada, Y. Toyota, and R. Koga, “Convergence acceleration and accuracy improvement in power bus impedance calculation with a fast algorithm using cavity modes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 2-9, Feb. 2005.
[13] Anatol I. Zverev, Handbook of Filter Synthesis, 2nd ed. New York:Wiley, 1998, pp. 26-30, 237-240.
[14] M. S. Sharawi, “Practical issues in high speed PCB design,” IEEE Potentials, vol. 23, no. 2, Apr.-May 2004, pp. 24-27.
[15] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices, Hoboken, NJ: Wiley, 2000.
[16] S. B. Cohn, “Slotline on a dielectric substrate,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 10, pp. 768-778, Oct. 1969.
[17] D. M. Pozar, Microwave Engineering, Revised edition. New York:Wiley, 2005.
[18] J.S. Hong and M. J. Lancaster, Microstrip Filters for RF / Microwave Applications, 2nd Edition. New York:Wiley, 2011.
[19] W.-H. Tu and K. Chang, “Compact microstrip bandstop filter using open stub and spurline,” IEEE Microw. Wireless Compon. Lett., 15, no. 4, pp. 268–270, Apr. 2005.
[20] E. Yablonovitch, Phys. Rev. Lett. 58, 2059, 1987.

QR CODE