簡易檢索 / 詳目顯示

研究生: Sleshi Fentie Tadesse
Sleshi Fentie Tadesse
論文名稱: 鉬基氧硫化合物之可見光催化劑其合成與有機汙染物降解之研究
Synthesis and Investigation of Visible Light-Driven Molybdenum OxySulfide Based Photoctalysts and their Application for Detoxification of Organic Pollutants
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: Ren-Kae Shiue
Ren-Kae Shiue
Yao-Tung Lin
Yao-Tung Lin
Shin-Yun Chen
Shin-Yun Chen
Toyoko Imae
Toyoko Imae
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 196
中文關鍵詞: 氧硫化物有機染料光觸媒光降解摻雜異質結可見光
外文關鍵詞: Oxy-sulfide, organic dyes, Photocatalyst, Photodegradation, doping, heterojunction, visible light
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著工業化的快速發展和人口的增加,水污染已成為世界範圍內的一個嚴重問題。合成染料是工業操作引入水體的最普遍的污染物之一,對人類健康和環境構成嚴重威脅。因此,含有這些持久性和致癌污染物的廢水在排放到環境中之前必須進行處理。基於簡易性和高催化效率,半導體光觸媒的非均相光催化最近成為有機污染物淨化的創新技術。在第一項研究中,V 摻雜的 Mo(O,S)2 氧硫化物是在 95°C 的低溫下使用沉澱法合成。透過 XRD、拉曼、FT-IR、FE-SEM、TEM、XPS、PL 和 EIS 測量表徵所製備材料的結晶度、表面形貌、元素狀態、光學和電化學性質。透過降解亞甲藍 (MB) 染料來評估Mo(O,S)2和 V 摻雜的 Mo(O,S)2 的光催化活性。在可見光照射下,10%釩前驅體合成的V-Mo(O,S)2-10對MB降解的光催化效率最高,表觀速率常數為0.028 min-1,明顯高於Mo(O,S)2 的速率常數為 0.0098 min-1。 V 插入 Mo(O,S)2 晶格會阻礙電子-空穴對的複合率並降低觸媒界面處的電荷轉移電阻,從而證實了更高的光催化效率。空穴(h+)和羥基自由基(OH•)參與了亞甲藍(MB)的光催化降解機制。V摻雜的Mo(O,S)2也表現出良好的穩定性和長期可重複使用性,使其成為工業應用中去除有機染料的有前途的光催化劑。
開發低成本和可見光驅動的金屬氧化物和硫化物基之異質結光觸媒用於降解不同類型的有機染料一直是減輕環境污染的主要研究領域。在第二項工作中,透過簡單的低溫沉澱法製備了一種新型高效的 Nd2O3/Mo(S,O)3-x·0.34H2O 異質結光觸媒。使用各種電子顯微鏡和光譜技術研究了所製備材料的晶體結構、元素組成、光學性質和催化活性。此工作針對甲基橙 (MO)、羅丹明 B (RhB) 和亞甲藍 (MB) 作為研究,藉以評估在可見光照射下水溶液中的光催化效率。 20 mol% Nd2O3/Mo(S,O)3-x·0.34H2O奈米複合材料表現出優異的降解效率,分別在120分鐘、90分鐘和90分鐘後分解98.8%、99.9%和99.8%的MO、RhB和MB min 可見光照射。 HPLC-MS 分析進一步證實了染料分子的完全去除。異質結的形成、高電荷分離和光致 e--h+ 對的低複合率歸因於增強的光催化活性。超氧自由基 (O2-•) 、羥基自由基 (HO•) 和空穴 (h+) 被確定為參與 MO、RhB 和 MB 染料光催化反應機制的主要氧化物質。由於發色團及其分子量的不同性質,每個染料分子的降解速率不同。因此,合成的異質結光觸媒可用於去除各種染料分子以進行環境恢復。
在第三項工作中,使用簡單的一步沉澱法合成新型 Fe-Mo3(O,S)4-x/La4Mo2O11 奈米複合材料。在 Fe-Mo3(O,S)4-x 和 La4Mo2O11 之間形成 n-n 跨接異質結,在可見光譜中表現出較寬的光吸收範圍和最大光響應強度。與純 MoOS 和其他材料相比,FeLaMoOS-0.3,0.5 複合材料在可見光照射下表現出更高的降解性能,在 90 分鐘內降解 97.5% MO 和 99.2% RhB。在黑暗中攪拌45分鐘後MB的去除率為99.6%。由於摻雜的協同效應和異質結的形成,提高的光催化效率可歸因於 e--h+ 對電荷分離效率的提高。在捕獲實驗中證實超氧自由基(O2•-) 在MO 和RhB 染料的光催化降解中扮演主導作用,而羥基自由基(•OH) 起次要作用。基於所涉及的活性物種和光觸媒的能帶排列,提出了有機染料可能的光催化降解機制。所合成的光催化劑在環境恢復中的長期應用表現出高穩定性和可重複使用性。


Water pollution has become a severe concern all over the world as a result of rapid industrialization and population increase. Synthetic dyes are one of the most prevalent pollutants introduced into water bodies by industrial operations, posing a serious threat to human health and the environment. Waste effluents that contain persistent and carcinogenic pollutants should be treated before being released into the environment. Heterogeneous photocatalysis based on semiconductor photocatalysts has recently emerged as an innovative technology for the decontamination of organic contaminants due to its simplicity and high catalytic efficiency. In the first study, V-doped Mo(O,S)2 oxysulfide was synthesized using a simple and facile precipitation method at a low temperature of 95°C. The crystallinity, surface morphology, elemental states, optical and electrical properties of the as-prepared materials were characterized applying different characterization techniques. The photocatalytic activity of both bare and V-doped Mo(O,S)2 was evaluated by the degradation of methylene blue (MB) dye. Under visible light irradiation, V-Mo(O,S)2-10 synthesized with 10% vanadium precursor showed the highest photocatalytic efficiency for MB degradation, with an apparent rate constant of 0.028 min-1. The insertion of V into the Mo(O,S)2 lattice hinders the recombination rate of electron-hole pair and reduces charge transfer resistance at the catalyst interface, confirming higher photocatalytic efficiency. V-doped Mo(O,S)2 also performed good stability and long-term reusability, making it a promising photocatalyst for organic dye removal in industrial applications.
Developing low-cost and visible-light-driven metal oxide and sulfide-based heterojunction photocatalysts for the degradation of organic dyes has been a major area of research to mitigate environmental pollution. In the second work, a novel and highly efficient Nd2O3/Mo(S,O)3-x·0.34H2O heterojunctions photocatalyst was prepared via a simple precipitation method at low temperature. The crystal structure, elemental composition, optical properties, and catalytic activities of as-prepared materials were investigated using various electron microscopes and spectroscopic techniques. Organic dyes of methyl orange (MO), Rhodamine B (RhB), and Methylene blue (MB) were used as model organic pollutants to evaluate the photocatalytic efficiency in aqueous solution under visible light irradiation. 20 mol% Nd2O3/Mo(S,O)3-x·0.34H2O nanocomposite showed excellent degradation efficiency and it decomposed 98.8%, 99.9%, and 99.8% of MO, RhB, and MB after 120 min, 90 min, and 90 min irradiation, respectively. The formation of heterojunction, high charge separation, and low recombination rate of photoinduced e--h+ pairs ascribed to the enhanced photocatalytic activity. Superoxide radicals (O2-•), hydroxyl radicals (HO•), and holes (h+) were identified as major oxidative species involved in the photocatalytic reaction mechanisms of MO, RhB, and MB dyes.
In the third work, A simple one-step precipitation method was used to synthesize novel Fe-Mo3(O,S)4-x/La4Mo2O11 nanocomposites. The n-n straddling heterojunction is formed between Fe-Mo3(O,S)4-x and La4Mo2O11 and exhibits a broad light absorption range and maximum light response in the visible spectrum. Compared to pure MoOS and other compositions, the FeLaMoOS-0.3,0.5 composite exhibits a higher degradation performance under visible light irradiation, degrading 97.5% MO and 99.2% RhB in 90 minutes. The removal efficiency of MB was 99.6% after 45 min of stirring in the dark. The enhanced photocatalytic efficiency can be attributed to the improved charge separation efficiency of e--h+ pairs, due to the synergistic effect of doping and the formation of heterojunction. The possible photocatalytic degradation mechanisms of organic dyes were proposed based on the active species involved and band alignments of the photocatalysts. The as-synthesized photocatalyst exhibits high stability and reusability for long time application in environmental remediation.

Abstract i Acknowledgments iii List of Units and Abbreviations iv Table of Contents vi List of Figures x List of Tables xvi List of Scheme xvii CHAPTER ONE 1 1. Introduction 1 1.1. Background of the Study 1 1.2. Organic dye pollutants 4 1.3. Photocatalytic treatment of organic pollutants 6 1.4. Mechanisms of enhanced photocatalytic activity 7 1.4.1. Heterojunction formation 8 1.4.2. Doping of metals and non-metal elements 10 1.4.3. Noble metal deposition 11 1.5. Photocatalysis reaction mechanisms 11 1.6. Photocatalytic kinetics model 14 1.7. Motivation 15 1.8. Objective of the study 16 1.8.1. General objectives 16 1.8.2. Specific objectives 16 CHAPTER TWO 18 2. Literature Reviews 18 2.1. Photocatalytic removal of synthetic dyes 18 2.2. Bi2(O,S)3/Mo(O,S)2 nanocomposite for efficient degradation of dye pollutants 20 2.2.1. Photocatalytic activities 23 2.3. Indium doped Molybdenum oxy-sulfide for degradation of organic dyes 26 2.3.1. Photocatalytic activity 29 2.3.2. Photocatalytic degradation mechanisms of dyes 30 2.4. Metal oxide photocatalyst 32 CHAPTER THREE 37 3. Experimental 37 3.1. Chemicals and reagents 37 3.2. Preparation of catalysts 37 3.2.1. Synthesis of V-doped Mo (O,S)2 oxysulfide 37 3.2.2. Synthesis of Nd2O3/Mo(S,O)3-x.0.34 H2O heterojunction 38 3.2.3. Synthesis of Mo3(O,S)4-x/La4Mo2O11 nanocomposite 38 3.3. Material characterizations 39 3.3.1. X-ray Diffractometer (XRD) 39 3.3.2. Raman and IR spectroscopy 41 3.3.3. Field emission scanning electron microscope (SEM/EDX) 42 3.3.4. High resolution transmission electron microscopy (HR-TEM) 44 3.3.5. X-ray photoelectron spectroscopy (XPS) 45 3.3.6. UV-Vis Spectroscopy (UV-Vis) 47 3.3.7. Photoluminescence Spectroscopy (PL) 48 3.3.8. Electrochemical impedance spectroscopy (EIS) 49 3.4. Measurement of photocatalytic activity 50 CHAPTER FOUR 54 4. Results and Discussion 54 4.1. Vanadium-doped Mo(O,S)2 oxysulfide for photocatalytic degradation of methylene blue dye 55 4.1.1. Material characterizations 56 4.1.2. Photocatalytic degradation activity 69 4.1.3. Photocatalytic degradation mechanism 74 4.1.4. Summery 76 4.2. Visible light driven Nd2O3/Mo(S,O)3-x·0.34H2O heterojunction for photocatalytic degradation of organic pollutants 78 4.2.1. Characterization of materials 79 4.2.2. Kinetics and Photocatalytic Efficiency 98 4.2.3. Reaction mechanisms of photocatalytic degradation 106 4.2.4. Summery 110 4.3. Fe-doped Mo3(O,S)4-x/La4Mo2O11 nanocomposite for efficient photodegradation of dye pollutants 112 4.3.1. Morphology and structural analysis 113 4.3.2. Photocatalytic activity 128 4.3.3. Possible photocatalytic degradation mechanisms 135 4.3.4. Summery 139 CHAPTER FIVE 140 5. Final Conclusion and Outlook 140 5.1. Conclusion 140 5.2. Outlook 142 References 144

References

[1] M.K. Nazri, N. Sapawe, A short review on photocatalytic toward dye degradation, Materials Today: Proceedings, 31 (2021) 42-47.
[2] P. Lum, K. Foo, N. Zakaria, P. Palaniandy, Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review, Materials Chemistry Physics, 241 (2020) 122405.
[3] S.D. Noel, M. Rajan, Impact of dyeing industry effluent on ground water quality by water quality index and correlation analysis, Journal of Polution Effects and Control, 2 (2014) 1-4.
[4] H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation, Chemical Society Reviews, 48 (2019) 1255-1271.
[5] F. Parrino, M. Bellardita, E. García-López, G. Marcì, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects, ACS Catalysis, 8 (2018) 11191-11225.
[6] C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Heterogeneous single-atom photocatalysts: fundamentals and applications, Chemical Reviews, 120 (2020) 12175-12216.
[7] R. Khoshnavazi, H. Sohrabi, L. Bahrami, M. Amiri, Photocatalytic activity inhancement of TiO2 nanoparticles with lanthanide ions and sandwich-type polyoxometalates, Journal of Sol-Gel Science Technology, 83 (2017) 332-341.
[8] A.S. Weber, A.M. Grady, R.T. Koodali, Lanthanide modified semiconductor photocatalysts, Catalysis Science Technology, 2 (2012) 683-693.
[9] A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, Journal of Taibah University for Science, 10 (2016) 352-362.
[10] L.W. Duresa, D.-H. Kuo, K.E. Ahmed, M.A. Zeleke, H. Abdullah, Highly enhanced photocatalytic Cr (vi) reduction using In-doped Zn (O,S) nanoparticles, New Journal of Chemistry, 43 (2019) 8746-8754.
[11] K.E. Ahmed, D.-H. Kuo, W.L. Kebede, In-situ synthesis and characterizations of Bi2 (O,S)3/Zn (O,S) composites for visible light hexavalent chromium reduction, Advanced Powder Technology, 30 (2019) 1664-1671.
[12] W.L. Kebede, D.-H. Kuo, K.E. Ahmed, H. Abdullah, Dye degradation over the multivalent charge-and solid solution-type n-MoS2/p-WO3 based diode catalyst under dark condition with a self-supporting charge carrier transfer mechanism, Advanced Powder Technology, 31 (2020) 2629-2640.
[13] Q. Wang, S. Xu, F. Shen, Preparation and characterization of TiO2 photocatalysts co-doped with iron (III) and lanthanum for the degradation of organic pollutants, Applied Surface Science, 257 (2011) 7671-7677.
[14] Q. Tian, W. Yao, W. Wu, J. Liu, Z. Wu, L. Liu, Z. Dai, C. Jiang, Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag, ACS Sustainable Chemistry Engineering, 5 (2017) 10889-10899.
[15] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Advances in colloid interface science, 209 (2014) 172-184.
[16] S. Benkhaya, S. M'rabet, A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes, Heliyon, 6 (2020) e03271.
[17] K.G. Akpomie, J. Conradie, Synthesis, characterization, and regeneration of an inorganic–organic nanocomposite (ZnO@biomass) and its application in the capture of cationic dye, Scientific Reports, 10 (2020) 1-12.
[18] S. Balu, K. Uma, G.-T. Pan, T.C.-K. Yang, S.K. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers, Materials Chemistry and Physics, 11 (2018) 1030.
[19] S. Xia, L. Zhang, G. Pan, P. Qian, Z. Ni, Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways, Physical Chemistry Chemical Physics, 17 (2015) 5345-5351.
[20] H. Ali, Biodegradation of synthetic dyes—a review, Water, Air and Soil Pollution, 213 (2010) 251-273.
[21] S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology, 29 (2018) 342001.
[22] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189-218.
[23] C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, Journal of Chemical Technology Biotechnology: International Research in Process, Environmental Clean Technology, 83 (2008) 769-776.
[24] Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Current Pollution Reports, 1 (2015) 167-176.
[25] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chemical Reviews, 114 (2014) 9919-9986.
[26] M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review, Green Chemistry Letters Reviews, 11 (2018) 86-102.
[27] J. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, J. Guzmán-Mar, A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications, Chemical Engineering Journal Advances, 5 (2020) 100070-100089.
[28] W. Shao, H. Wang, X. Zhang, Elemental doping for optimizing photocatalysis in semiconductors, Dalton Transactions, 47 (2018) 12642-12646.
[29] M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis, Journal of Environmental Management, 196 (2017) 487-498.
[30] S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261 (2010) 3-18.
[31] I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways, Applied Catalysis B: Environmental, 42 (2003) 319-335.
[32] K.V. Kumar, K. Porkodi, F. Rocha, Langmuir–Hinshelwood kinetics–a theoretical study, Catalysis Communications, 9 (2008) 82-84.
[33] R. Molinari, P. Argurio, M. Bellardita, L. Palmisano, C. Bertoni, Photocatalytic processes in membrane reactors, Comprehensive Membrane Science and Engineering (Second Edition), Elsevier, (2017) 101-138.
[34] J. Singh, Y.-Y. Chang, J.R. Koduru, J.-K. Yang, J. Singh, Y.-Y. Chang, J.R. Koduru, J.-K. Yang, Potential degradation of methylene blue (MB) by nano-metallic particles: A kinetic study and possible mechanism of MB degradation, Environmental Engineering Resarch, 23 (2017) 1-9.
[35] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31 (2001) 145-157.
[36] B. Rodríguez-Cabo, I. Rodríguez-Palmeiro, R. Corchero, R. Rodil, E. Rodil, A. Arce, A. Soto, Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14] Cl, Water Science and Technology, 75 (2017) 128-140.
[37] R.N. Priyanka, S. Joseph, T. Abraham, N.J. Plathanam, B. Mathew, Novel La(OH)3-integrated sGO-Ag3VO4/Ag nanocomposite as a heterogeneous photocatalyst for fast degradation of agricultural and industrial pollutants, Catalysis Science andTechnology, (2020) 1039-1053.
[38] S.A. Mohammed, L. Al Amouri, E. Yousif, A.A. Ali, F. Mabood, H.F. Abbas, S. Alyaqoobi, Synthesis of NiO:V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation, Heliyon, 4 (2018) 581-593.
[39] Y. Li, F. Xiang, W. Lou, X. Zhang, MoS2 with structure tuned photocatalytic ability for degradation of methylene blue, in: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2019, pp. 052021.
[40] N. Saha, A. Sarkar, A.B. Ghosh, A.K. Dutta, G.R. Bhadu, P. Paul, B. Adhikary, Highly active spherical amorphous MoS2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes, RSC Advances, 5 (2015) 88848-88856.
[41] S. Kapatel, C. Sumesh, Two-step facile preparation of MoS2·ZnO nanocomposite as efficient photocatalyst for methylene blue (dye) degradation, Electronic Matterials Letters, 15 (2019) 119-132.
[42] S.A. Ansari, M.H. Cho, Simple and large scale construction of MoS2-gC3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications, Scientific Reports, 7 (2017) 43055.
[43] H. Sadhanala, S. Senapati, K.V. Harika, K.K. Nanda, A. Gedanken, Green synthesis of MoS2 nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions, New Jornal of Chemistry, 42 (2018) 14318-14324.
[44] S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium, Applied Catalysis B: Environmental, 254 (2019) 432-442.
[45] A.K. Singh, J. Prasad, U.P. Azad, A.K. Singh, R. Prakash, K. Singh, A. Srivastava, A.A. Alaferdov, S.A. Moshkalev, Vanadium doped few-layer ultrathin MoS2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction, RSC Advances, 9 (2019) 22232-22239.
[46] R. Jaiswal, N. Patel, D. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen, Applied Catalysis B: Environmental, 126 (2012) 47-54.
[47] H. Li, K. Yu, X. Lei, B. Guo, H. Fu, Z. Zhu, Hydrothermal synthesis of novel MoS2/BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation, Journal of Physical Chemistry C, 119 (2015) 22681-22689.
[48] W.-Q. Chen, L.-Y. Li, L. Li, W.-H. Qiu, L. Tang, L. Xu, K.-J. Xu, M.-H. Wu, MoS2/ZIF-8 Hybrid Materials for Environmental Catalysis: Solar-Driven Antibiotic-Degradation Engineering, Engineering Medicine, 5 (2019) 755-767.
[49] H. Abdullah, D.-H. Kuo, N.S. Gultom, N=N Bond Cleavage of Azobenzene via Photocatalytic Hydrogenation with Dy-doped Zn (O, S): the Progress from Hydrogen Evolution to Green Chemical Conversion, Catalysis Science Technology, 9 (2019) 2651-2663.
[50] L.W. Duresa, D.-H. Kuo, K.E. Ahmed, M.A. Zeleke, H. Abdullah, Highly enhanced photocatalytic Cr (vi) reduction using In-doped Zn (O, S) nanoparticles, New Journal of Chemistry, 43 (2019) 8746-8754.
[51] F.T. Bekena, D.-H. Kuo, W.L. Kebede, Universal and highly efficient degradation performance of novel Bi2(O,S)3/Mo(O,S)2 nanocomposite photocatalyst under visible light, Separation Purification Technology, 247 (2020) 117042.
[52] W.L. Kebede, D.-H. Kuo, F.T. Bekena, L.W. Duresa, Highly efficient In–Mo (O, S) 2 oxy-sulfide for degradation of organic pollutants under visible light irradiation: An example of photocatalyst on its dye selectivity, Chemosphere, 254 (2020) 126823.
[53] S.O. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Synthesis and characterisation of neodymium doped-zinc oxide–graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light, Research on Chemical Intermediates, 43 (2017) 481-501.
[54] J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles, Applied Surface Science, 455 (2018) 195-200.
[55] M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuS-CdS nanocomposite under visible light irradiation, Applied Surface Science, 475 (2019) 828-838.
[56] Q. Tian, W. Wu, S. Yang, J. Liu, W. Yao, F. Ren, C. Jiang, Zinc oxide coating effect for the dye removal and photocatalytic mechanisms of flower-Like MoS2 nanoparticles, Nanoscale Resarch Letters, 12 (2017) 221-230.
[57] W. Avansi, V.R. de Mendonca, O.F. Lopes, C. Ribeiro, Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation, RSC Advances, 5 (2015) 12000-12006.
[58] A. Sarkar, A.B. Ghosh, N. Saha, A.K. Dutta, D.N. Srivastava, P. Paul, B. Adhikary, Enhanced photocatalytic activity of Eu-doped Bi2S3 nanoflowers for degradation of organic pollutants under visible light illumination, Catalysis Science Technology, 5 (2015) 4055-4063.
[59] V.U. Pandit, S.S. Arbuj, Y.B. Pandit, S.D. Naik, S.B. Rane, U.P. Mulik, S.W. Gosavi, B.B. Kale, Solar light driven dye degradation using novel organo–inorganic (6, 13-pentacenequinone/TiO2) nanocomposite, RSC Advances, 5 (2015) 10326-10331.
[60] D. Malwal, P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation, Catalysis Science Technology, 6 (2016) 4458-4472.
[61] D. Malwal, P. Gopinath, Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation, Environmental Science: Nano, 2 (2015) 78-85.
[62] A. Boughelout, R. Macaluso, M. Kechouane, M. Trari, Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films, Reaction Kinetics, Mechanisms Catalysis, (2020) 1-16.
[63] M. Amini, M. Ashrafi, Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles, Nanochemistry Research, 1 (2016) 79-86.
[64] S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale research letters, 10 (2015) 73.
[65] C.H. Nguyen, C.-C. Fu, R.-S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways, Journal of Cleaner Production, 202 (2018) 413-427.
[66] B. Rodríguez-Cabo, I. Rodríguez-Palmeiro, R. Corchero, R. Rodil, E. Rodil, A. Arce, A. Soto, Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14] Cl, Water Science Technology, 75 (2017) 128-140.
[67] S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Synergetic effect of MoS2-RGO doping to enhance the photocatalytic performance of ZnO nanoparticles, New Journal of Chemistry, 40 (2016) 5185-5197.
[68] U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes, RSC advances, 8 (2018) 17582-17594.
[69] W.-C. Lin, C.-H. Chen, H.-Y. Tang, Y.-C. Hsiao, J.R. Pan, C.-C. Hu, C. Huang, Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition, Applied Catalysis B: Environmental, 140 (2013) 32-41.
[70] F. Akbal, Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters, Environmental Progress, 24 (2005) 317-322.
[71] P. Suresh, A. Umabala, A.P. Rao, Rapid sun light degradation of Rhodamine-B, Methylene blue, Methyl orange, Congo red and their binary mixtures using suprastoichiometric Bi-Molybdate, International Journal of Engineering Applied Sciences, 2 (2015) 257851.
[72] Z.U. Abideen, F. Teng, Enhanced photochemical activity and stability of ZnS by a simple alkaline treatment approach, CrystEngComm, 20 (2018) 7866-7879.
[73] X. Hu, G. Wang, J. Wang, Z. Hu, Y. Su, Step-scheme NiO/BiOI heterojunction photocatalyst for rhodamine photodegradation, Applied Surface Science, 511 (2020) 145499.
[74] Y.-L. Chan, S.-Y. Pung, S. Sreekantan, F.-Y. Yeoh, Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation, Journal of Experimental Nanoscience, 11 (2016) 603-618.
[75] H. Zhou, J. Guo, N. Fang, J. Liang, T. Shen, S. Yuan, Investigation of photocatalytic performance of CuS/Bi2WO6 and degradation pathway of RhB in water, Journal of Water Supply: Research Technology-AQUA, 69 (2020) 145-159.
[76] R. Moussaoui, K. Elghniji, M. ben Mosbah, E. Elaloui, Y. Moussaoui, Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying, Journal of Saudi Chemical Society, 21 (2017) 751-760.
[77] X. Chen, L. Liu, F. Huang, Black titanium dioxide (TiO2) nanomaterials, Chemical Society Reviews, 44 (2015) 1861-1885.
[78] A.K.L. Sajjad, S. Sajjad, A. Iqbal, N.U.A. Ryma, ZnO/WO3 nanostructure as an efficient visible light catalyst, Ceramic International, 44 (2018) 9364-9371.
[79] Z. Wen, W. Wu, Z. Liu, H. Zhang, J. Li, J. Chen, Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids, Physical Chemistry Chemical Physics, 15 (2013) 6773-6778.
[80] I.M. Szilagyi, B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo, A.L. Toth, P. Baranyai, M. Leskela, WO3 photocatalysts: Influence of structure and composition, Journal of Catalysis, 294 (2012) 119-127.
[81] Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, D.D. Dionysiou, High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via In situ hydrothermal oxidation of SnS2 nanoparticles, ACS Applied Materials Interfaces, 3 (2011) 1528-1537.
[82] G. Elango, S.M. Roopan, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye, Journal of Photochemistry Photobiology, B, 155 (2016) 34-38.
[83] S.K. Jayaraj, V. Sadishkumar, T. Arun, P. Thangadurai, Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity, Materials Science in Semiconductor Processing, 85 (2018) 122-133.
[84] L. Li, X.L. Liu, M. Gao, W. Hong, G.Z. Liu, L. Fan, B. Hu, Q.H. Xia, L. Liu, G.W. Song, Z.S. Xu, The adsorption on magnetic hybrid Fe3O4/HKUST-1/GO of methylene blue from water solution, Journal of Materials Chemistry A, 2 (2014) 1795-1801.
[85] M. Barzegar, A. Habibi-Yangjeh, M. Behboudnia, Ultrasonic-assisted preparation and characterization of CdS nanoparticles in the presence of a halide-free and low-cost ionic liquid and photocatalytic activity, Journal of Physics and Chemistry of Solids, 71 (2010) 1393-1397.
[86] S.V.P. Vattikuti, J. Shim, C. Byon, 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity, Journal of Solid State Chemistry, 258 (2018) 526-535.
[87] W.C. Peng, Y. Li, F.B. Zhang, G.L. Zhang, X.B. Fan, Roles of two-dimensional transition metal dichalcogenides as cocatalysts in photocatalytic hydrogen evolution and environmental remediation, Industrial and Engineering Chemistry Resarch, 56 (2017) 4611-4626.
[88] S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115-15131.
[89] D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian, X.H. Bao, Catalysis with two-dimensional materials and their heterostructures, Nature Nanotechnology, 11 (2016) 218-230.
[90] A.A. Tedstone, D.J. Lewis, P. O'Brien, Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides, Chemistry of Materials, 28 (2016) 1965-1974.
[91] J. Mao, Y. Wang, Z.L. Zheng, D.H. Deng, The rise of two-dimensional MoS2 for catalysis, Frontiers in Physics, 13 (2018) 138118.
[92] J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, Inorganic chemistry: principles of structure and reactivity, Pearson Education India, 2006.
[93] A. Raza, M. Ikram, M. Aqeel, M. Imran, A. Ul-Hamid, K.N. Riaz, S.J.A.N. Ali, Enhanced industrial dye degradation using Co doped in chemically exfoliated MoS2 nanosheets, (2019) 1-10.
[94] X.L. Wang, X. Wang, Q.Y. Di, H.L. Zhao, B. Liang, J.K. Yang, Mutual effects of Fluorine dopant and Oxygen vacancies on structural and luminescencecharacteristics of F doped SnO2 nanoparticles, Materials, 10 (2017) 1398.
[95] A.K. Singh, J. Prasad, U.P. Azad, A.K. Singh, R. Prakash, K. Singh, A. Srivastava, A.A. Alaferdov, S.A. Moshkalev, Vanadium doped few-layer ultrathin MoS2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction, RSC Advances, 9 (2019) 22232-22239.
[96] Y. Zhao, J. Liu, X. Zhang, C. Wang, X. Zhao, J. Li, H. Jin, Convenient synthesis of WS2-MoS2 heterostructures with enhanced photocatalytic performance, Journal of Physical Chemistry C, 123 (2019) 27363-27368.
[97] W.L. Kebede, D.H. Kuo, M.A. Zeleke, K.E. Ahmed, A novel Sb-doped Mo(O,S)3 oxy-sulfide photocatalyst for degradation of methylene blue dye under visible light irradiation, Journal of Alloys and Compounds, 797 (2019) 986-994.
[98] B.C. Windom, W.G. Sawyer, D.W. Hahn, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological Systems, Tribology Letters, 42 (2011) 301-310.
[99] O. Lupan, V. Trofim, V. Cretu, I. Stamov, N.N. Syrbu, I. Tiginyanu, Y.K. Mishra, R. Adelung, Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide, Journal of Physics D: Applied Physics, 47 (2014) 085302.
[100] L. Seguin, M. Figlarz, R. Cavagnat, J.-C. Lassègues, Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates, Spectrochimca Acta Part A, 51 (1995) 1323-1344.
[101] G. Mestl, P. Ruiz, B. Delmon, H. Knozinger, Oxygen-exchange properties of MoO3 an in-situ Raman-spectroscopy study, Journal of Physical Chemistry, 98 (1994) 11269-11275.
[102] G. Nagaraju, K.V. Thipperudraiah, G.T. Chandrappa, Organic assisted hydrothermal route to MoO2/HDA composite microspheres and their characterization, Materials Resarch Bulletin, 43 (2008) 3297-3304.
[103] T.N.Y. Khawula, K. Raju, P.J. Franklyn, I. Sigalas, K.I. Ozoemena, Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage, Journal of Materials Chemistry A, 4 (2016) 6411-6425.
[104] V. Ramakrishnan, C. Alex, A.N. Nair, N.S. John, Designing metallic MoO2 nanostructures on rigid substrates for electrochemical water activation, Chemistry (Easton), 24 (2018) 18003-18011.
[105] S.B. Ameur, A. Barhoumi, R. Mimouni, B. Duponchel, G. Leroy, M. Amlouk, H. Guermazi, Physical investigations on undoped and Fluorine doped SnO2 nanofilms on flexible substrate along with wettability and photocatalytic activity tests, Material Science in Semiconductor Processing, 61 (2017) 17-26.
[106] M. Junaid, M. Imran, M. Ikram, M. Naz, M. Aqeel, H. Afzal, H. Majeed, S. Ali, The study of Fe-doped CdS nanoparticle-assisted photocatalytic degradation of organic dye in wastewater, Applied Nanoscience, 9 (2019) 1593-1602.
[107] P. Hota, M. Miah, S. Bose, D. Dinda, U.K. Ghorai, Y.-K. Su, S.K. Saha, Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application, Journal of Materials Science Technology, 40 (2020) 196-203.
[108] S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium, Applied Catalysis B: Environmental, 254 (2019) 432-442.
[109] G. Hota, S. Idage, K.C. Khilar, Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique, Colloids and Surfaces, A 293 (2007) 5-12.
[110] M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides, RSC Advances, 5 (2015) 75953-75963.
[111] T.E. Jones, T.C. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlogl, S. Piccinin, Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere, Physical Chemistry Chemical Physics, 17 (2015) 9288-9312.
[112] X. Qi, J. Peng, D. Tang, N. Wang, H. Zou, PEGMa modified molybdenum oxide as a NIR photothermal agent for composite thermal/pH-responsive p (NIPAM-co-MAA) microgels, Journal of Materials Chemistry, 5 (2017) 8788-8795.
[113] S. Jaiswar, K.D. Mandal, Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time, Journal of Physical Chemistry C, 121 (2017) 19586-19601.
[114] J.G. Choi, L.T. Thompson, XPS study of as-prepared and reduced molybdenum oxides, Applied Surface Science, 93 (1996) 143-149.
[115] N. Weidler, J. Schuch, F. Knaus, P. Stenner, S. Hoch, A. Maljusch, R. Schafer, B. Kaiser, W. Jaegermann, X-ray Photoelectron Spectroscopic investigation of plasma enhanced chemical vapor deposited NiOx, NiOx(OH)(y), and CoNiOx,(OH)(y): Influence of the chemical composition on the catalytic activity for the oxygen evolution reaction, Journal of Physical Chemistry C, 121 (2017) 6455-6463.
[116] J.A. Raiford, R.A. Belisle, K.A. Bush, R. Prasanna, A.F. Palmstrom, M.D. McGehee, S.F. Bent, Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems, Sustainable Energy Fuels, 3 (2019) 1517-1525.
[117] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V 2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), Journal of Electron Spectroscopy Related Phenomena, 135 (2004) 167-175.
[118] B. Chai, X. Wang, S.Q. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity, Ceramic International, 40 (2014) 429-435.
[119] K.L. Lv, J.C. Hu, X.H. Li, M. Li, Cysteine modified anatase TiO2 hollow microspheres with enhanced visible-light-driven photocatalytic activity, Journal of Molecular Catalysis A: Chemical , 356 (2012) 78-84.
[120] L.Q. Pang, A. Barras, Y. Zhang, M.A. Amin, A. Addad, S. Szunerits, R. Boukherroub, CoO promoted the catalytic activity of nitrogen-doped MoS2 supported on carbon fibers for overall water splitting, ACS Applied Materials Interfaces, 11 (2019) 31889-31898.
[121] Y. Wang, W. Chen, X. Chen, H. Feng, D. Shen, B. Huang, Y. Jia, Y. Zhou, Y. Liang, Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis, Journal of Environmental Science , 65 (2018) 347-355.
[122] S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Synergetic effect of MoS2-RGO doping to enhance the photocatalytic performance of ZnO nanoparticles, New Journal of Chemistry, 40 (2016) 5185-5197.
[123] Y.J. Zhao, X.W. Zhang, C.Z. Wang, Y.Z. Zhao, H.P. Zhou, J.B. Li, H.B. Jin, The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property, Applied Surface Science, 412 (2017) 207-213.
[124] H.L. Li, K. Yu, X. Lei, B.J. Guo, H. Fu, Z.Q. Zhu, Hydrothermal synthesis of novel MoS2/BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation, Journal Physical Chemistry C, 119 (2015) 22681-22689.
[125] A. Ghalajkhani, M. Haghighi, M. Shabani, Efficient photocatalytic degradation of methylene blue in aqueous solution over flowerlike nanostructured MoS2-FeZnO staggered heterojunction under simulated solar-light irradiation, Journal of Photochemistry Photobiology, A 359 (2018) 145-156.
[126] G. Gong, Y. Liu, B. Mao, B. Wang, L. Tan, D. Li, Y. Liu, W. Shi, Mechanism study on the photocatalytic efficiency enhancement of MoS2 modified Zn–AgIn5S8 quantum dots, RSC Advances, 6 (2016) 99023-99033.
[127] Y.C. Hsiao, T.F. Wu, Y.S. Wang, C.C. Hu, C.P. Huang, Evaluating the sensitizing effect on the photocatalytic decoloration of dyes using anatase-TiO2, Applied Catalysis B: Environmental, 148 (2014) 250-257.
[128] P.M. Wood, The potential diagram for oxygen at pH-7, Biochemical Journal, 253 (1988) 287-289.
[129] Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, Oxysulfide photocatalyst for visible-light-driven overall water splitting, Nature materials, 18 (2019) 827-832.
[130] F.T. Bekena, D.-H. Kuo, W.L. Kebede, Universal and highly efficient degradation performance of novel Bi2(O,S)3/Mo (O,S)2 nanocomposite photocatalyst under visible light, Separation Purification Technology, 247 (2020) 117042.
[131] M.A. Zeleke, D.-H. Kuo, K.E. Ahmed, N.S. Gultom, Facile synthesis of bimetallic (In, Ga)2(O,S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr (VI), Journal of colloid interface science, 530 (2018) 567-578.
[132] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
[133] N.S. Gultom, H. Abdullah, D.-H. Kuo, W.-C. Ke, Oriented p–n heterojunction Ag2O/Zn(O,S) nanodiodes on mesoporous SiO2 for photocatalytic hydrogen production, ACS Applied Energy Materials, 2 (2019) 3228-3236.
[134] S.F. Tadesse, D.-H. Kuo, W.L. Kebede, L.W. Duresa, Synthesis and characterization of vanadium-doped Mo(O, S)2 oxysulfide for efficient photocatalytic degradation of organic dyes, New Journal of Chemistry, 44 (2020) 19868-19879.
[135] X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles, Materials, 10 (2017) 1398.
[136] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering, Advanced Functional Materials, 22 (2012) 1385-1390.
[137] S.P. Vattikuti, P. Nagajyothi, P. Anil Kumar Reddy, M. Kotesh Kumar, J. Shim, C. Byon, Tiny MoO3 nanocrystals self-assembled on folded molybdenum disulfide nanosheets via a hydrothermal method for supercapacitor, Materials Research Letters, 6 (2018) 432-441.
[138] X. Wang, Y. Zhang, Tuning the structure of MoO3 nanoplates via MoS2 oxidation, Philosophical Magazine Letters, 96 (2016) 347-354.
[139] J.Z. Ou, J.L. Campbell, D. Yao, W. Wlodarski, K.J. Kalantar-Zadeh, In situ Raman spectroscopy of H2 gas interaction with layered MoO3, The Journal of Physical Chemistry C, 115 (2011) 10757-10763.
[140] S.R. Sanivarapu, J.B. Lawrence, G. Sreedhar, Role of surface oxygen vacancies and lanthanide contraction phenomenon of Ln(OH)3 (Ln= La, Pr, and Nd) in sulfide-mediated photoelectrochemical water splitting, ACS omega, 3 (2018) 6267-6278.
[141] S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, S. Angaiah, Facile synthesis of electrostatically anchored Nd (OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors, New Journal of Chemistry, 42 (2018) 2923-2932.
[142] P. Ghasemipour, M. Fattahi, B. Rasekh, F.J. Yazdian, Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline, Scientific reports, 10 (2020) 1-16.
[143] S.I. Costa, V.D. Cauneto, L.D. Fiorentin-Ferrari, P.B. Almeida, R.C. Oliveira, E. Longo, A.N. Modenes, V. Slusarski-Santana, Synthesis and characterization of Nd (OH)3-ZnO composites for application in photocatalysis and disinfection, Chemical Engineering Journal, 392 (2020) 123737.
[144] A.S. Etman, H.N. Abdelhamid, Y. Yuan, L. Wang, X. Zou, J. Sun, Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation, ACS omega, 3 (2018) 2193-2201.
[145] P. Jittiarporn, L. Sikong, K. Kooptarnond, W. Taweepreda, Effects of precipitation temperature on the photochromic properties of h-MoO3, Ceramics International, 40 (2014) 13487-13495.
[146] P. Ghasemipour, M. Fattahi, B. Rasekh, F. Yazdian, Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline, Scientific Reports, 10 (2020) 1-16.
[147] D. Philip, G. Aruldhas, V. Ramakrishnan, Infrared and Raman spectra of aquamolybdenum (VI) oxide hydrate (MoO3·2H2O), Pramana, 30 (1988) 129-133.
[148] S.H. Jeon, K. Nam, H.J. Yoon, Y.-I. Kim, D.W. Cho, Y. Sohn, Hydrothermal synthesis of Nd2O3 nanorods, Ceramics International, 43 (2017) 1193-1199.
[149] J.-G. Kang, Y.-I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures, Materials Science in Semiconductor Processing, 40 (2015) 737-743.
[150] Z. Zhen, J.-L. Song, J.-H. Zheng, J.-S. Lian, Optical properties and photocatalytic activity of Nd-doped ZnO powders, Transactions of Nonferrous Metals Society of China, 24 (2014) 1434-1439.
[151] Y. Tian, J. Zhang, X. Jing, S. Xu, Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass, Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 98 (2012) 355-358.
[152] O.A. Carrasco-Jaim, R. Ahumada-Lazo, P.C. Clark, C. Gómez-Solis, S.M. Fairclough, S.J. Haigh, M.A. Leontiadou, K. Handrup, L.M. Torres-Martínez, W.R. Flavell, Photocatalytic hydrogen production by biomimetic indium sulfide using Mimosa pudica leaves as template, international journal of hydrogen energy, 44 (2019) 2770-2783.
[153] L. Wang, P. Wang, B. Huang, X. Ma, G. Wang, Y. Dai, X. Zhang, X. Qin, Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity, Applied Surface Science, 391 (2017) 557-564.
[154] H. Li, K. Yu, Z. Tang, H. Fu, Z. Zhu, High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: from theory to experiment, Physical Chemistry Chemical Physics, 18 (2016) 14074-14085.
[155] R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant, M. Kumar, Growth of MoS2-MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature, Advanced Materials Interfaces, 5 (2018) 1800071.
[156] W. Wu, C. Niu, Q. Tian, W. Liu, G. Niu, X. Zheng, C. Li, Y. Jia, C. Wei, Q. Xu, Amorphous-MoO3−x/MoS2 heterostructure: in situ oxidizing amorphization of S-vacancy MoS2 for enhanced alkaline hydrogen evolution, Chemical Communications, 56 (2020) 14701-14704.
[157] D. Dinda, M.E. Ahmed, S. Mandal, B. Mondal, S.K. Saha, Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium, Journal of Materials Chemistry A, 4 (2016) 15486-15493.
[158] Y. Xia, C. Hu, S. Guo, L. Zhang, M. Wang, J. Peng, L. Xu, J. Wang, Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing, ACS Applied Nano Materials, 3 (2019) 665-673.
[159] J. Alfonso, L. Moreno, Preparation and chemical characterization of neodymium-doped molybdenum oxide films grown using spray pyrolysis, Revista mexicana de física, 60 (2014) 114-118.
[160] V. Bilovol, S. Ferrari, D. Derewnicka, F.D. Saccone, XANES and XPS study of electronic structure of Ti-enriched Nd–Fe–B ribbons, Materials Chemistry Physics, 146 (2014) 269-276.
[161] C.W. Kim, Y.H. Kim, U. Pal, Y.S.J.J.o.M.C.C. Kang, Facile synthesis and magnetic phase transformation of Nd–Fe–B nanoclusters by oxygen bridging, Journal of Materials Chemistry C, 1 (2013) 275-281.
[162] J. Chen, Y. Liao, X. Wan, S. Tie, B. Zhang, S. Lan, X. Gao, A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye, Journal of Solid State Chemistry, 291 (2020) 121652.
[163] M.H. Mirfasih, C. Li, A. Tayyebi, Q. Cao, J. Yu, J.-J.R. Delaunay, Oxygen-vacancy-induced photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under acid-mediated hydrothermal treatment conditions, RSC advances, 7 (2017) 26992-27000.
[164] J.W. Moir, E.V. Sackville, U. Hintermair, G.A. Ozin, Kinetics versus charge separation: Improving the activity of stoichiometric and non-stoichiometric hematite photoanodes using a molecular iridium water oxidation catalyst, The Journal of Physical Chemistry C, 120 (2016) 12999-13012.
[165] K. Sasan, F. Zuo, Y. Wang, P.J.N. Feng, Self-doped Ti3+–TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation, Nanoscale, 7 (2015) 13369-13372.
[166] M. Szkoda, K. Trzciński, M. Łapiński, A. Lisowska-Oleksiak, Photoinduced K+ intercalation into MoO3/FTO photoanode-the impact on the photoelectrochemical performance, Electrocatalysis, 11 (2020) 111-120.
[167] R. Ji, C. Ma, W. Ma, Y. Liu, Z. Zhu, Y. Yan, Z-scheme MoS2/Bi2O3 heterojunctions: enhanced photocatalytic degradation performance and mechanistic insight, New Journal of Chemistry, 43 (2019) 11876-11886.
[168] X.-F. Wu, H. Li, Y. Sun, Y.-J. Wang, C.-X. Zhang, J.-Z. Su, J.-R. Zhang, F.-F. Yang, Y. Zhang, J.-C. Pan, Synthesis of SnS2/few layer boron nitride nanosheets composites as a novel material for visible-light-driven photocatalysis, Applied Physics A, 123 (2017) 1-8.
[169] A.S. Kshirsagar, A. Gautam, P.K. Khanna, Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures, Journal of Photochemistry Photobiology A: Chemistry, 349 (2017) 73-90.
[170] X.-F. Wu, H. Li, J.-Z. Su, J.-R. Zhang, Y.-M. Feng, Y.-N. Jia, L.-S. Sun, W.-G. Zhang, M. Zhang, C.-Y. Zhang, Full spectrum responsive In2.77S4/WS2 pn heterojunction as an efficient photocatalyst for Cr (VI) reduction and tetracycline oxidation, Applied Surface Science, 473 (2019) 992-1001.
[171] Y. Lin, P. Ren, C. Wei, Fabrication of MoS2/TiO2 heterostructures with enhanced photocatalytic activity, CrystEngComm, 21 (2019) 3439-3450.
[172] Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, Y. He, In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation, Journal of Materials Research, 32 (2017) 3660.
[173] M. Szkoda, K. Trzciński, A. Nowak, M. Gazda, M. Sawczak, A. Lisowska-Oleksiak, The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants, Materials Chemistry Physics, 248 (2020) 122908.
[174] T. Zhu, L. Huang, Y. Song, Z. Chen, H. Ji, Y. Li, Y. Xu, Q. Zhang, H. Xu, H. Li, Modification of Ag3VO4 with graphene-like MoS2 for enhanced visible-light photocatalytic property and stability, New Journal of Chemistry, 40 (2016) 2168-2177.
[175] A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, Facile synthesis of a Z-scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation, ACS omega, 5 (2020) 8188-8199.
[176] W. Que, Z. Sun, X. Hu, Yellow-to-violet up-conversion luminescence in neodymium-doped sol-gel GeO2∕γ-glycidoxypropyltrimethoxysilane hybrid planar waveguides, Journal of applied physics, 98 (2005) 093518.
[177] M. Basith, R. Ahsan, I. Zarin, M. Jalil, Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight, Scientific Reports, 8 (2018) 1-11.
[178] Y. Huang, W. Wang, Q. Zhang, J.-j. Cao, R.-j. Huang, W. Ho, S.C. Lee, In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplate heterojunctions with tunable optical property and photocatalytic activity, Scientific Reports, 6 (2016) 1-9.
[179] J. Zhu, W. Jiang, B. Wang, L. Niu, C. Dong, D. Qu, L. An, X. Wang, Z. Sun, Highly efficient wurtzite/zinc blende CdS visible light photocatalyst with high charge separation efficiency and stability, The Journal of Chemical Physics, 152 (2020) 244703-244709.
[180] C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO, Applied Catalysis B: Environmental, 243 (2019) 629-640.
[181] M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts, in, Elsevier, 2015.
[182] K. Huang, Y. Lv, W. Zhang, S. Sun, B. Yang, F. Chi, S. Ran, X. Liu, One-step synthesis of Ag3PO4/Ag photocatalyst with visible-light photocatalytic activity, Materials Research, 18 (2015) 939-945.
[183] Z. Shan, W. Wang, X. Lin, H. Ding, F. Huang, Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br, Journal of Solid State Chemistry, 181 (2008) 1361-1366.
[184] H.-Y. Xu, L.-C. Wu, H. Zhao, L.-G. Jin, S.-Y. Qi, Synergic effect between adsorption and photocatalysis of metal-free gC3N4 derived from different precursors, PLoS One, 10 (2015) e0142616.
[185] D. Cao, Q. Wang, S. Zhu, X. Zhang, Y. Li, Y. Cui, Z. Xue, S. Gao, Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution, Separation Purification Technology, 265 (2021) 118463-118477.
[186] S. Duraisamy, A. Ganguly, P.K. Sharma, J. Benson, J. Davis, P. Papakonstantinou, One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction, ACS Applied Nano Materials, 4 (2021) 2642-2656.
[187] S.A. Darsara, M. Seifi, M.B. Askari, One-step hydrothermal synthesis of MoS2/CdS nanocomposite and study of structural, photocatalytic, and optical properties of this nanocomposite, Optik, 169 (2018) 249-256.
[188] H. Li, K. Yu, X. Lei, B. Guo, H. Fu, Z. Zhu, Hydrothermal synthesis of novel MoS2/BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation, The Journal of Physical Chemistry C, 119 (2015) 22681-22689.
[189] S.K. Ray, Y.K. Kshetri, D. Dhakal, C. Regmi, S.W. Lee, Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4: Er3+/Yb3+/K+ microcrystals, Journal of Photochemistry Photobiology A: Chemistry, 339 (2017) 36-48.
[190] H. Xian, H. Guo, J. Xia, Q. Chen, Y. Luo, R. Song, T. Li, E. Traversa, Iron-Doped MoO3 Nanosheets for Boosting Nitrogen Fixation to Ammonia at Ambient Conditions, ACS Applied Materials Interfaces, 13 (2021) 7142-7151.
[191] P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei, X. Zhao, In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell, Journal of Materials Chemistry A, 2 (2014) 2742-2756.
[192] M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction, Physical Chemistry Chemical Physics, 4 (2002) 812-821.
[193] S.D. Garton, C.A. Temple, I.K. Dhawan, M.J. Barber, K. Rajagopalan, M.K. Johnson, Resonance Raman characterization of biotin sulfoxide reductase: comparing oxomolybdenum enzymes in the Me2SO reductase family, Journal of Biological Chemistry, 275 (2000) 6798-6805.
[194] K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, A. Babiński, Resonant Raman scattering in MoS2-From bulk to monolayer, Solid state communications, 197 (2014) 53-56.
[195] R. Jbeli, A. Boukhachem, F. Saadallah, S. Alleg, M. Amlouk, H. Ezzaouïa, Synthesis and physical properties of Fe doped La2O3 thin films grown by spray pyrolysis for photocatalytic applications, Materials Research Express, 6 (2019) 066414.
[196] S. Arunachalam, B. Kirubasankar, E. Rajagounder Nagarajan, D. Vellasamy, S. Angaiah, A facile chemical precipitation method for the synthesis of Nd(OH)3 and La(OH)3 nanopowders and their supercapacitor performances, ChemistrySelect, 3 (2018) 12719-12724.
[197] Z. Yao, H. Sun, H. Sui, X. Liu, 2D/2D Heterojunction of R-scheme Ti3C2 MXene/MoS2 Nanosheets for Enhanced Photocatalytic Performance, Nanoscale research letters, 15 (2020) 1-12.
[198] S.P. Vattikuti, P. Nagajyothi, K. Devarayapalli, K. Yoo, N.D. Nam, J. Shim, Hybrid Ag/MoS2 nanosheets for efficient electrocatalytic oxygen reduction, Applied Surface Science, 526 (2020) 146751-146760.
[199] A. Klinbumrung, T. Thongtem, S. Thongtem, Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process, Journal of Nanomaterials, 2012 (2012) 1-5.
[200] S.K. Hussain, G. Nagaraju, E. Pavitra, G.S.R. Raju, J.S. Yu, La(OH)3: Eu3+ and La2O3: Eu3+ nanorod bundles: growth mechanism and luminescence properties, CrystEngComm, 17 (2015) 9431-9442.
[201] B.S. Goud, G. Koyyada, J.H. Jung, G.R. Reddy, J. Shim, N.D. Nam, S.P. Vattikuti, Surface oxygen vacancy facilitated Z-scheme MoS2/Bi2O3 heterojunction for enhanced visible-light driven photocatalysis-pollutant degradation and hydrogen production, International Journal of Hydrogen Energy, 45 (2020) 18961-18975.
[202] B.P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, S. Sharma, Combustion synthesized La2O3 and La(OH)3: recyclable catalytic activity towards Knoevenagel and Hantzsch reactions, RSC Advances, 4 (2014) 55407-55416.
[203] F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, J. Ma, Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method, Physical Chemistry Chemical Physics, 17 (2015) 16058-16066.
[204] J.-G. Kang, Y.-I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures, Materials Science in Semiconductor Processing, 40 (2015) 737-743.
[205] L. Lin, S. Huang, Y. Zhu, B. Du, Z. Zhang, C. Chen, X. Wang, N. Zhang, Construction of CdS/MoS2 heterojunction from core–shell MoS2@Cd-MOF for efficient photocatalytic hydrogen evolution, Dalton Transactions, 48 (2019) 2715-2721.
[206] J.-G. Choi, L. Thompson, XPS study of as-prepared and reduced molybdenum oxides, Applied surface science, 93 (1996) 143-149.
[207] X. Hou, A. Mensah, M. Zhao, Y. Cai, Q. Wei, Facile controlled synthesis of monodispersed MoO3-MoS2 hybrid nanospheres for efficient hydrogen evolution reaction, Applied Surface Science, 529 (2020) 147115-147123.
[208] S. Harish, J. Archana, M. Navaneethan, M. Shimomura, H. Ikeda, Y. Hayakawa, Synergistic interaction of 2D layered MoS2/ZnS nanocomposite for highly efficient photocatalytic activity under visible light irradiation, Applied Surface Science, 488 (2019) 36-45.
[209] C.V. Reddy, R. Koutavarapu, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Shim, Z-scheme binary 1D ZnWO4 nanorods decorated 2D NiFe2O4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater, Journal of Environmental Management, 268 (2020) 110677-110689.
[210] L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang, T.B. Lu, Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting, Advanced Science, 5 (2018) 1800949-1800958.
[211] H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, Journal of Molecular Catalysis A: Chemical, 400 (2015) 81-89.
[212] K. Singh, A. Gautam, K. Sen, R. Kotnala, M. Kumar, P. Gautam, M. Singh, Room temperature long range ferromagnetic ordering in (BiFeO3)1−x(PbTiO3)x nanocrystallites, Journal of Applied Physics, 109 (2011) 123911-123915.
[213] M. Ajmal, T. Ali, M.A. Khan, S. Ahmad, S.A. Mian, A. Waheed, S. Ali, Structural and optical properties of La2O3: Ho3+ and La(OH)3: Ho3+ crystalline particles, Materials Today: Proceedings, 4 (2017) 4900-4905.
[214] J. Zhu, W. Jiang, B. Wang, L. Niu, C. Dong, D. Qu, L. An, X. Wang, Z. Sun, Highly efficient wurtzite/zinc blende CdS visible light photocatalyst with high charge separation efficiency and stability, The Journal of Chemical Physics 152 (2020) 244703-244709.
[215] Q. Huang, F. Kang, H. Liu, Q. Li, X. Xiao, Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis, Journal of Materials Chemistry A, 1 (2013) 2418-2425.
[216] A. Chachvalvutikul, T. Luangwanta, S. Pattisson, G.J. Hutchings, S. Kaowphong, Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light–responsive Bi2WO6/ZnIn2S4 heterojunction, Applied Surface Science, 544 (2021) 148885-148898.
[217] M.H. Mirfasih, C. Li, A. Tayyebi, Q. Cao, J. Yu, J.-J. Delaunay, Oxygen-vacancy-induced photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under acid-mediated hydrothermal treatment conditions, RSC advances, 7 (2017) 26992-27000.
[218] S. Yan, Z. Li, Z. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26 (2010) 3894-3901.
[219] C. Zhu, L. Zhang, B. Jiang, J. Zheng, P. Hu, S. Li, M. Wu, W. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation, Applied Surface Science, 377 (2016) 99-108.
[220] P.C. Dey, R. Das, Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 231 (2020) 118122-118131.
[221] S. Nayak, G. Swain, K. Parida, Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-scheme mechanism via p–n heterojunctions, ACS applied materials interfaces, 11 (2019) 20923-20942.
[222] M.A. Kumar, B. Abebe, H. Nagaswarupa, H.A. Murthy, C. Ravikumar, F.K. Sabir, Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors, Scientific Reports, 10 (2020) 1-15.
[223] H. Li, K. Yu, Z. Tang, H. Fu, Z. Zhu, High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment, Physical Chemistry Chemical Physics, 18 (2016) 14074-14085.
[224] H. Li, J. Liu, T. Hu, N. Du, S. Song, W. Hou, Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance, Materials Research Bulletin, 77 (2016) 171-177.
[225] S.P. Vattikuti, C. Byon, S. Jeon, Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS2 nanoflakes by self-assembly approach, Physica B: Condensed Matter, 502 (2016) 103-112.
[226] Y.-Q. Cao, T.-Q. Zi, X.-R. Zhao, C. Liu, Q. Ren, J.-B. Fang, W.-M. Li, A.-D. Li, Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition, Scientific Reports, 10 (2020) 1-10.
[227] H. Liu, Z. Jin, Z. Xu, Z. Zhang, D. Ao, Fabrication of ZnIn2S4–gC3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants, RSC Advances, 5 (2015) 97951-97961.
[228] Y. Ma, Y. Bian, Y. Liu, A. Zhu, H. Wu, H. Cui, D. Chu, J. Pan, Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction, ACS Sustainable Chemistry Engineering, 6 (2018) 2552-2562.

無法下載圖示 全文公開日期 2024/08/12 (校內網路)
全文公開日期 2031/08/12 (校外網路)
全文公開日期 2026/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE