簡易檢索 / 詳目顯示

研究生: 林亞鋆
Ya-yun Lin
論文名稱: 自振式環型主動天線之創新設計
Novel Designs of Self-oscillating Annular Active Integrated Antennas
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
瞿大雄
Tah-Hsiung Chu
陳士元
Shih-Yuan Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 自振式主動天線迴授振盪器環型天線具負載間隙環型天線振盪器指標
外文關鍵詞: self-oscillating active integrated antenna, feedback oscillator, annular ring antenna, gap loaded ring antenna, oscillator figure of merit
相關次數: 點閱:263下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨為研製新型自振式環型主動集成天線,並達到小型化及可頻率重置之效果。此研究將微波電晶體直接嵌入環型微帶天線之內部,使天線不僅為輻射體,亦作為振盪器之迴授路徑。此一體化結構,可有效縮小電路面積、降低線路傳輸損失,並可透過迴授路徑獲得良好之相位雜訊。
    本論文首先提出一款具迴授路徑之自振式環型主動天線;其次,將相同尺寸之環型天線一側邊開路,成功完成前款設計之小型化實現,其電路具有50%之縮小比例。兩款天線的振盪器指標(FOM)分別為為-177.07 dBc/H及-168.76 dBc/Hz。
    本論文之第二部份,則於環型天線引入間隙負載,使其具有多模態操作之特點,並用於兩款新型自振式主動天線設計。該兩款設計使用相同尺寸之環型天線,但利用不同位置之間隙負載,可使振盪頻率分別為3.65 GHz及5.65 GHz,其振盪器指標則為-163.08 dBc/Hz及-171.02 dBc/Hz。
    最終,本論文利用PIN二極體控制間隙負載之開路或短路,成功實現一款可頻率重置自振式主動天線。該天線可操作於兩振盪頻率,其振盪器指標分別為-170.73 dBc/H及-162.62 dBc/Hz。
    參酌文獻記載,可知本論文所提出之五款新型主動天線設計,具有小型化之優勢,且有相當之振盪器指標。


    This study focuses on the development of novel self-oscillating annular ring active integrated antennas (AIAs) with compact size and reconfigurability. The annular ring microstrip antenna, with a microwave transistor being directly embedded into its structure, acts not only a radiator but a feedback loop of the oscillator. Due to the integration, the proposed design can significantly reduce the circuit size, lower the transmission loss, and obtain better phase noise with the feedback.
    A self-oscillating annular ring active integrated antenna with feedback loop is first proposed. A compact version of the first design, with a size reduction percentage of 50%, is then realized by modifying the boundary condition of the radiator such that the antenna resonance is changed from one-wavelength mode to a half-wavelength mode. According to the experiments, the oscillator figure of merits (FOMs) of the two designs are, respectively, -177.07 and -168.76 dBc/Hz.
    By introducing a gap loading, the annular ring microstrip antenna exhibits mulit-mode operation, which can be utilized to develop two novel self-oscillating active antennas. The new designs, oscillating at 3.65 and 5.65 GHz, respectively, use the same radiator but difference gap loading. The oscillator FOMs of the two designs are -163.08 and -171.02 dBc/Hz, respectively.
    Finally, by utilizing PIN diodes to control the location of the gap loading, a frequency-reconfigurable self-oscillating active antenna is successfully implemented. The antenna can switch in two oscillating modes, with oscillating frequency of 3.45 and 5.25 GHz. The oscillator FOMs are -170.73 and -162.62 dBc/Hz, respectively, for the two modes.
    When compared with the designs in literature, the proposed self-oscillating active antennas in thesis feature more compact size with compared oscillator FOMs.

    摘要 I Abstract III 目錄 V 圖目錄 VI 表目錄 X 第二章 微波電晶體振盪器工作原理與自振式主動天線概述 3 2.1 前言 3 2.2 穩定因素 3 2.3 振盪條件 4 2.3.1 迴授振盪器 4 2.3.2 單埠負電阻振盪器 4 2.3.3 雙埠負電阻振盪器 6 2.4 自振式主動天線概述 6 2.5 結語 8 第三章 自振式環型天線 15 3.1 前言 15 3.2 具迴授路徑之自振式環型天線 15 3.2.1 環型天線輻射體 15 3.2.2 具迴授路徑之自振式環型主動天線設計 17 3.2.3 量測結果 18 3.2.4 天線輻射體與振盪頻率關係之探討 21 3.3 具迴授路徑自振式環型主動天線之小型化設計 22 3.3.1 環型天線輻射體 22 3.3.2 自振式環形主動天線之小型化設計 23 3.3.3 量測結果 23 3.3.4調節振盪頻率之探討 25 3.4 結語 26 第四章 具間隙負載之自振式環型主動天線 53 4.1 前言 53 4.2 具開槽負載之環型天線 53 4.2.1 垂直間隙負 53 4.2.2 水平間隙負載 54 4.2.3 討論 54 4.3 具90度間隙負載之自振式環型主動天線 55 4.3.1 具90度間隙負載之環型輻射體 55 4.3.2 具90度間隙負載之自振式環型主動天線設計 56 4.3.3 量測結果 57 4.3.4 振盪頻率之調節 58 4.4 具45度間隙負載之自振式環型主動天線 58 4.4.1 具45度間隙負載之環型輻射體 58 4.4.2 具45度挖槽負載之具迴授自振式環型主動天線設計 59 4.4.3 量測結果 60 4.5 可頻率重置之具迴授自振式環型主動天線 61 4.5.1 可頻率重置主動天線 61 4.5.2 模擬結果與量測 62 4.6 結語 64 第五章 結論 99 5.1 總結 99 5.2 未來工作 99 References 101

    [1] B. Robert, T. Razban, and A. Papiemik, “Compact amplifier integration in square patch antenna,’’ Electron. Lett., vol. 28, no. 19, pp. 1808-1810, Sept. 1992.

    [2] S. V. Robertson, N. 1. Dib, G. Yang, and L. P. B. Katehi, “A folded slot antenna for planar quasi-optical mixer applications,” in 1993 IEEE AP-S Int. Symp. Dig., vol. 2, pp. 600-603, June 1993.

    [3] M. J. Cryan, P. S. Hall, K. S. H. Tsang, and J. Sha, “Integrated active antenna with full duplex operation,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 10, pp. 1742–1748, Oct. 1997.

    [4] M. J. Cryan, G. R. Buesnel, P. S. Hall, “Analysis and control of harmonic radiation from active integrated oscillator antennas,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2639–2646, Nov. 2002.

    [5] D. H. Choi, S. O. Park, “A varactor-tuned active-integrated antenna using slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 191–193, 2005.

    [6] Y. Chen, Z. Chen, “A dual-gate FET subharmonic injection-locked self-oscillating active integrated antenna for RF transmission,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 199–201, Jun. 2003.

    [7] J. Shi, J. X. Chen, Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans.Microwave Theory Tech., vol. 56, pp. 2207–2212, Oct. 2008.

    [8] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, F. A. Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antenna Propagat., vol. 56, pp. 1236–1241, May 2008.

    [9] M. Sironen, Y. Qian, and T. Itoh, “A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless applications,” IEEE Trans. Microwave Theory Tech., vol. 49, no 3, pp. 442–450, Mar. 2001.

    [10] G. Guillermo, Microwave Transistor Amplifier Analysis and Design, ed., Prentice Hall.

    [11] S. R. Hall, N. M. Wereley, “Generalized Nyquist stability criterion for linear timeperiodic system,” pp. 1518-1525,1990.

    [12] R. L. Carter, J. M. OWENS, and D. K. DE, “YIG oscillators: Is a planar geometry better” IEEE Trans. Microw. Theory Tech., vol. MTT-32, no. 12, pp.1671-1674,1984.

    [13] M. Zheng, P. Gardener, P. S. Hall, Y. Hao, Q. Chen, and V. F. Fusco, “Cavity control of active integrated antenna oscillators,” Proc. Inst. Elect. Eng. Microwave Antennas Propagation, vol. 148, pp. 15–20, 2001.

    [14] H. P. Moyer and R. A. York, “Active cavity-backed slot antenna using MESFETs,” IEEE Microw. GuidedWave Lett., vol. 3, pp. 95–97, 1993.

    [15] G. Forma and J.-M. Lahuerte, “Design for injection-locked oscillator arrays,” Electron. Lett., vol. 34, pp. 683–684, 1998.

    [16] H.-C. Chang, X. Cao, M. J. Vaughan, U. K. Mishra, and R. A. York, “Phase noise in externally injection-locked oscillator arrays,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 2035–2042, 1997.

    [17] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip p atch antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 201–206, 2002.

    [18] M. Muhammad, H. Thomas and S. Dana, “Phase noise and frequency stability of Ka-band harmonic dielectric resonator oscillators.”

    [19] K. Chang, ”Microwave ring circuit and antennas,” John Wiley & Sons, 1996.

    [20] R. Garg,” microstrip antenna design handbook,” Artech House Publishers, 2001.

    [21] J. Choi and C. Seo,”Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3245–3252, 2008.

    [22] S. I. Latif, L. Shafai, “Loaded annular ring antennas for multi-frequency operation,” 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting

    [23] S. I. Latif, L. Shafai, “Polarization characteristics of multiband loaded microstrip annular ring antennas,” IEEE Trans. Antenna Propagat., vol. 9, pp. 2788–2793, Sep. 2009.

    [24] K. Chang, R. York, P. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 937–944, 2002.

    QR CODE