簡易檢索 / 詳目顯示

研究生: 吳軒
Hsuan Wu
論文名稱: 以3D列印實現高等效全向輻射功率圓極化自振式主動集成天線之研究
A Study of 3D-printing High Equivalent Isotropically Radiated Power Circularly Polarized Self-Oscillating Integrated Antenna
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
陳筱青
Hsiao-Chin Chen
陳晏笙
Yen-Sheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 自振式主動集成天線高等效全向輻射功率超穎物質圓極化三維列印人造磁導體
外文關鍵詞: self-oscillating active integrated antenna, high equivalent isotropic radiated power, metamaterial, circular polarization, 3D-printing, artificial magnetic conductor
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨為「以三維列印實現高等效全向輻射功率圓極化自振式主動集成天線」,乃利用高功率電晶體與立體高天線增益達到目的。為了使振盪器能有效激發接地面之輻射,本研究採用零階超穎物質共振器作為激發源。而為達高增益圓極化天線設計,採用三維列印製作立體天線,最後於天線背面放置人造磁導體反射板來提升整體天線增益。
    本研究提出兩款高等效全向輻射功率圓極化自振主動集成天線。第一款採用四螺旋臂設計圓極化主動天線,並以零階超穎物質共振器作為激發源於,再於背面放置人造磁導體作為反射板,其等效全向輻射功率可達17.8 dBm,直流-射頻轉換效率為 20 %,xz平面之可用圓極化範圍為-50°~55°,yz平面之可用圓極化範圍為-50°~70°。吾人又提出第二款單螺旋圓極化自振主動集成天線,其等效全向輻射功率可進一步提升至22.5dBm,直流-射頻轉換效率為24.7 %,xz平面之可用圓極化範圍為-59°~57°,yz平面之可用圓極化範圍為-40°~43°。


    The main purpose of this thesis is, " A Study of three-dimensional (3D)-printing High Equivalent Isotropic Radiated Power Circularly Polarized Self-Oscillating Integrated Antenna (CPAIA)", which uses high power transistors and 3Dprinting high gain antenna to achieve the goal. Metamaterial zeroth-order resonators are used to excite the ground plane. In order to achieve the goal of circularly-polarized self-oscillating integrated antenna design, this thesis uses 3D-printer to produce three-dimensional antenna with spiral arms. Finally, an artificial magnetic conductor (AMC) is placed on the back of the antenna to increase the overall antenna gain.
    Two versions of high equivalent isotropic radiated power (EIRP) circularly polarized self-oscillating integrated antenna are proposed and demonstrated. The first CPAIA is proposed based on quad-helical antenna. By using the metamaterial zeroth-order resonators as the excitation source and placing an artificial magnet conductor on the back side of the antenna, the equivalent isotropic radiated power can reach to 17.8 dBm, while the DC-RF conversion efficiency is 20%. The circular polarization region is -50°~55° in the xz plane, and -50°~70° in the yz plane. Following the design rule, in the second design a two-arm helical circularly polarized antenna is proposed, which has an equivalent isotropic radiated power of 22.5 dBm, the DC-RF conversion efficiency of 24.7%. The circular polarization region is -59°~57° in the xz plane, and -40°~43° in the yz plane.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 vi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 四螺旋臂圓極化天線與人造磁導體反射板之整合 6 2.1 前言 6 2.2 自振式主動集成天線之設計與分析流程 6 2.3 超穎物質原理 8 2.4 四螺旋臂圓極化天線與人造磁導體反射板之整合 11 2.4.1 超穎物質共振器之設計 11 2.4.2 四螺旋臂圓極化天線設計與分析 14 2.4.3 模擬與量測結果 34 2.5 結語 40 第三章 單螺旋圓極化天線之設計 41 3.1 前言 41 3.2單螺旋圓極化天線 41 3.2.1 單螺旋圓極化天線設計與分析 41 3.2.2模擬與量測結果 53 3.3 單螺旋圓極化天線與人造磁導體反射板之整合 59 3.3.1單螺旋圓極化天線設計與分析 59 3.3.4模擬與量測結果 65 3.4 文獻效力與比較 70 3.5 結語 73 第四章 結論 74 4.1 總結 74 4.2 未來發展 75 參考文獻 76 附錄 81

    參考文獻
    [1] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today's intranet of things to a future internet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol. 17, pp. 44–51, 2010.
    [2] M. Zhang, F. Sun, and X. Cheng, “Architecture of internet of things and its key technology integration based-on RFID, ” in Proc. Int. Symp. on Computational Intelligence Design, 2012, pp. 294–297.
    [3] M.-H. Lee, C.-Y. Yao, and H.-C. Liu, “Passive tag for multi-carrier RFID systems,” in Proc. IEEE 17th Int. Conf. on Parallel and Distributed Systems, 2011, pp. 872–876.
    [4] J. Masuch, M. Delgado-Restituto, D. Milosevic, and P. Baltus, “Co-integration of an RF energy harvester into a 2.4 GHz transceiver,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1565–1574, Jul. 2013.
    [5] Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-power far-field wireless powering for wireless sensors,” Proc. IEEE, vol. 101, no. 6, pp. 1397–1409, Jun. 2013.
    [6] C. H. P. Lorenz et al., “Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4544–4555, Dec. 2015..
    [7] H. Reinisch et al., “An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728–1741, Jul. 2011.
    [8] C. Liu, Y. Zhang, and X. Liu, “Circularly Polarized Implantable Antenna for 915 MHz ISM-Band Far-Field Wireless Power Transmission,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 3, pp. 373–376, Mar. 2018.
    [9] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 201–206, Jan. 2002.
    [10] F. Giuppi, A. Georgiadis, A. Collado, and M. Bozzi, “A compact, single-layer substrate integrated waveguide (SIW) cavity-backed active antenna oscillator,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 431–433, 2012.
    [11] S. Yang, V.F. Fusco and D.E.J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna”, IEEE Trans. Microw. Theory Techn., vol. 49, no. 8, pp.1492-1497, Aug. 2001.
    [12] J. Bartolic, D. Bonefacic, and Z. Sipus, “Modified rectangular patches for self-oscillating active-antenna applications,” IEEE Antennas Propag. Mag., vol. 38, pp. 13–21, Aug. 1996.
    [13] P. Liao and R. A. York, “A varactor tuned patch oscillator for active arrays,” IEEE Microw. Guided Wave Lett., vol. 4, no. 10, pp. 335–337, Oct. 1994.
    [14] W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530–535, May. 1998.
    [15] K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-fed active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
    [16] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, and F.A.Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1236–1241, May 2008.
    [17] R. D. Martinez and R. C. Compton, “High-efficiency FET/microstrip patch oscillators,” IEEE Antennas and Propag. Mag., vol. 36, no. 1, pp. 16–19, Feb. 1994.
    [18] Y.-Y. Lin, C.-H. Wu, and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
    [19] C,-H. Wu, and T.-G. Ma, “Self-oscillating dual-ring active integrated antenna,” IEEE Int. Symp. on Antennas and Propagation Digest, 2011, pp. 2457-2460.
    [20] C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating active integrated antenna with quasi-isotropic radiation,” IEEE Trans. Antennas Propag., vol.62 ,no.2 , pp.933-936 , Feb. 2014.
    [21] A. Lai, C. Carloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004.
    [22] G. V. Eleftheriades, “Enabling RF/microwave devices using negative refractive-index transmission-line (NRI-TL) metamaterials,” IEEE Antennas Propag. Mag., vol. 49, no. 2, pp. 34-51, Apr. 2007
    [23] C.-J. Lee, H. Wei, A. Gummalla, and M. Achour, “Small antenna based on CRLH structures: Concept, design, application,” IEEE Antennas Propag. Mag., vol. 53, no. 2, pp. 10-25, Apr. 2011.
    [24] Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856-3864, 2010
    [25] M. A. Antoniades and G. V. Eleftheriades, “A folded-monopole model for electrically small NRI-TL metamaterial antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 425-428, Oct. 2008.
    [26] Z.-H. Liu, Y.-W. Chang, and T.-G. Ma, “High-Efficiency Self-Oscillating Active Integrated Antenna Using Metamaterial Resonators and Its Application to Multicarrier Radio Frequency Identification Systems,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3803-3810, Sept. 2016.
    [27] Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5011-5018, Oct. 2017.
    [28] Z.-H. Liu, H. N. Chu, and T.-G. Ma, “Self-Oscillating Active Integrated Antenna With Harmonic Suppression Using Metamaterial Resonators and Ground Radiation,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1687-1691, Sept. 2018.
    [29] J. Birkland and T. Itoh, “A circularly polarized FET oscillator active radiating element,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1265-1268, Jun. 1991.
    [30] S. Yang, V. F. Fusco, and D. E. J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 8, pp. 1492-1497, Aug. 2001.
    [31] L. Dussopt and J. M. Laheurte, “Coupled oscillator array generating circular polarization,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 160-162, Apr. 1999.
    [32] R. K. Singh, A. Basu, and S. K. Koul, “Asymmetric coupled polarization switchable oscillating active integrated antenna,” Proc. Asia–Pacific Microw. Conf. (APMC), pp. 1-4, 2016.
    [33] Y.-L. Tsai, H. N. Chu, and T.-G. Ma, “Self-oscillating Circularly-Polarized Active Integrated Monopole Antenna Using Cross-Coupled Pair and Inverted-L Strip,” IEEE Antenna Wireless Propag. Lett., vol. 19, no. 7, pp. 1132-1136, Jul. 2020.
    [34] 吳宣峰, 以零階共振器實現低成本圓極化自振式主動集成天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國109.
    [35] 葉耘傑, 以零階共振器實現低成本全向性圓極化主動天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國109.
    [36] 黃冠淳, 高等效全向輻射功率圓極化自振式主動集成天線之研究, 國立台灣科技大學電機工程研究所, 碩士論文, 民國110.
    [37] D. Sievenpiper et al., “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
    [38] N. M. Mohamed-Hicho et al., “A Novel Low-Profile High-Gain UHF Antenna Using High-Impedance Surfaces,” IEEE Antenna Wireless Propag. Lett., vol. 14, pp. 1014-1017, 2015.
    [39] B. S. Cook and A. Shamin, “Utilizing Wideband AMC Structures for High-Gain Inkjet-Printed Antennas on Lossy Paper Substrate,” IEEE Antenna Wireless Propag. Lett., vol. 12, pp. 76-79, 2013.
    [40] Y. Zhang et al., “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2704-2712, Oct. 2003.
    [41] H. N. Chu, Y.-Y. Chen, Y.-L. Tsai, and T.-G. Ma, “Low-cost polarization sensing system for self-oscillating circularly-polarized active integrated antenna,” IEEE Access, vol. 7, pp. 170534-170544, 2019.
    [42] W.-S. Yoon, S.-M. Han, J.-W Baik, S. Pyo, J. Lee and Y.-S. Kim, "Crossed dipole antenna with switchable circular polarisation sense", Electron. Lett., vol. 45, no. 14, pp. 717-718, 2009.
    [43] X. Tang and J. Zhang, "A strip-helical dipole antenna with wide bandwidth and high gain," 2016 International Symposium on Antennas and Propagation (ISAP), 2016, pp. 82-83.

    無法下載圖示 全文公開日期 2025/08/22 (校內網路)
    全文公開日期 2032/08/22 (校外網路)
    全文公開日期 2032/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE